ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Microbial biomass  (31)
  • Springer  (31)
  • American Chemical Society
  • Annual Reviews
  • Cambridge University Press
  • Elsevier
  • 2000-2004  (3)
  • 1995-1999  (28)
  • 1950-1954
Sammlung
Verlag/Herausgeber
  • Springer  (31)
  • American Chemical Society
  • Annual Reviews
  • Cambridge University Press
  • Elsevier
Erscheinungszeitraum
Jahr
  • 1
    ISSN: 1432-0789
    Schlagwort(e): Microbial biomass ; Dehydrogenase activity Urease ; Phosphatase ; Respiration ; ATP ; Grazing Fertiliser ; Lime
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract A field study was conducted to determine the influence of a short-term (2 year) cessation of fertiliser applications, liming, and sheep-grazing on microbial biomass and activity in a reseeded upland grassland soil. The cessation of fertiliser applications (N and NPK) on a limed and grazed grassland had no effect on microbial biomass measurements, enzyme activities, or respiration. Withholding fertiliser and lime from a grazed grassland resulted in significant reductions in both microbial biomass C (P〈0.05) and dehydrogenase activity (P〈0.05) by approximately 18 and 21%, respectively. The removal of fertiliser applications, liming, and grazing resulted in even greater reductions in microbial biomass C (44%, P〈0.001) and dehydrogenase activity (31%, P〈0.001), and significant reductions in microbial biomass N (P〈0.005), urease activity (P〈0.05), phosphatase activity (P〈0.001), and basal respiration (P〈0.05). The abundance of culturable bacteria and fungi and the soil ATP content were unaffected by changes in grassland managements. With the cessation of liming soil pH fell from 5.4 to 4.7, and the removal of grazing resulted in a further reduction to pH 4.5. A significant negative linear relationship (r 2=0.97; P〈0.01) was found between increasing soil acidity and dehydrogenase activity. Possible mechanisms influencing these changes are discussed.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Biology and fertility of soils 21 (1996), S. 271-276 
    ISSN: 1432-0789
    Schlagwort(e): 15N transformations ; Crop residues ; Soil texture ; Soil aggregation ; Microbial pool ; Microbial biomass
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract In a greenhouse pot study, we examined the availability of N to grain sorghum from organic and inorganic N sources. The treatments were15N-labeled clover residues, wheat residues, and fertilizer placed on a sandy clay loam and loamy sand soil surface for an 8-week period. Soil aggregates formed under each soil texture were measured after 8 weeks for each treatment. Significantly greater 15N was taken up and recovered by grain sorghum in sandy clay loam pots compared with loamy sand pots. Greater 15N recovery was consistently observed with the inorganic source than the organic sources regardless of soil texture or time. Microbial biomass C and N were significantly greater for sandy clay loam soil compared with the loamy sand. Microbial biomass 15N was also significantly greater in the sandy clay loam treatment compared to the loamy sand. The fertilizer treatment initially had the greatest pool of microbial biomass 15N but decreased with time. The crop residue treatments generally had less microbial biomass 15N with time. The crop residues and soil texture had a significant effect on the water-stable aggregates formed after 8 weeks of treatments. Significantly greater water-stable aggregates were formed in the sandy clay loam than the loamy sand. Approximately 20% greater water-stable aggregates were formed under the crop residue treatments compared to the fertilizer only treatment. Soil texture seemed to be one of the most important factors affecting the availability of N from organic or inorganic N sources in these soils.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-0789
    Schlagwort(e): Key words Acidic forest soil ; Phosphorus ; Coal combustion by-product ; Carbon cycling ; Cellulose ; Microbial biomass ; Liming
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract Phosphate rock (PR), limestone, coal combustion by-product (CCBP) high in Ca and high organic manures are potential amendments for increasing agricultural production in the acidic soils of the Appalachian region. The objective of this study was to examine effects of PR, CCBP and cellulose addition on soil microbial biomass in an acidic soil based on the measurement of soil microbial biomass P (P mic) and on the mineralization of organic matter. Application of PR alone or in combination with CCBP increased P mic. The P mic was far less when the soil received PR in combination with limestone than with PR application alone or PR in combination with CCBP. Either CCBP or limestone application alone considerably decreased P mic in the soil due to reduced P solubility. Cellulose addition alone did not increase P mic, but P mic was significantly increased when the soil was amended with cellulose in combination with PR. The decomposition of added cellulose was very slow in the soil without PR amendment. However, mineralization of both native organic matter and added cellulose was enhanced by PR application. Mineralization of organic matter was less when the soil was amended with PR in combination with high rates of CCBP (〉 2.5%) because PR dissolution varied inversely with amount of CCBP addition. Overall, CCBP had no detrimental effect on soil microbial biomass at low application rates, although, like limestone, CCBP at a high rate may decrease P mic in P-deficient soils through its influence on increased soil pH and decreased P bioavailability in the soil. Application of PR to an acidic soil considerably enhanced the microbial activity, thereby promoting the cycling of carbon and other nutrients.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1432-0789
    Schlagwort(e): Key words Nitrogen mineralization ; Nitrogen immobilization ; Microbial biomass ; Fertilizer ; Specific respiration
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract  Gross rates of soil processes and microbial activity were measured in two grazed permanent pasture soils which had recently been amended with N fertilizer or dung. 15N studies of rates of soil organic matter turnover showed gross N mineralization was higher, and gross N immobilization was lower, in a long-term fertilized soil than in a soil which had never received fertilizer N. Net mineralization was also found to be higher in the fertilized soil: a consequence of the difference between the opposing N turnover processes of N mineralization and immobilization. In both soils without amendments the soil microbial biomass contents were similar, but biomass activity (specific respiration) was higher in the fertilized soil. Short-term manipulation of fertilizer N input, i.e. adding N to unfertilized soil, or witholding N from previously fertilized soil, for one growing season, did not affect gross mineralization, immobilization or biomass size and activity. Amendments of dung had little effect on gross mineralization, but there was an increase in immobilization in both soils. Total biomass also increased under dung in the unfertilized soil, but specific respiration was reduced, suggesting changes in the composition of the biomass. Dung had a direct effect on the microbial biomass by temporarily increasing available soil C. Prolonged input of fertilizer N increases soil C indirectly as a result of enhanced plant growth, the effect of which may not become evident within one seasonal cycle.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Springer
    Biology and fertility of soils 21 (1996), S. 17-22 
    ISSN: 1432-0789
    Schlagwort(e): Atrazine ; Microbial biomass ; Herbicide degradation ; Basal respiration
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract A laboratory incubation experiment was set up to determine the effects of atrazine herbicide on the size and activity of the soil microbial biomass. This experiment was of a factorial design (0, 5, and 50 μg g−1 soil of non-labelled atrazine and 6.6×103 Bq g−1 soil of 14C-labelled atrazine) x (0, 20, and 100 μg g−1 soil of urea-N) x (pasture or arable soil with a previous history of atrazine application). Microbial biomass, measured by substrate-induced respiration and the fumigation-incubation method, basal respiration, incorporation of 14C into the microbial biomass, degradation of atrazine, and 14C remaining in soil were monitored over 81 days. The amount of microbial biomass was unaffected by atrazine although atrazine caused a significant enhancement of CO2 release in the non-fumigated controls. Generally, the amounts of atrazine incorporated into the microbial biomass were negligible, indicating that microbial incorporation of C from atrazine is not an important mechanism of herbicide breakdown. Depending on the type of soil and the rate of atrazine application, 18–65% of atrazine was degraded by the end of the experiment. Although the pasture soil had twice the amount of microbial biomass as the arable soil, and the addition of urea approximately doubled the microbial biomass, this did not significantly enhance the degradation of atrazine. This suggests that degradation of atrazine is largely independent of the size of the microbial biomass and suggests that other factors (e.g., solubility, chemical hydrolysis) regulate atrazine breakdown. A separate experiment conducted to determine total amounts of 14C-labelled atrazine converted into CO2 by pasture and arable soils showed that less than 25% of the added 14C-labelled atrazine was oxidised to 14CO2 during a 15-week period. The rate of degradation was significantly greater in the arable soil at 24%, compared to 18% in the pasture soil. This indicates that soil microbes with previous exposure to atrazine can degrade the applied atrazine at a faster rate.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Springer
    Biology and fertility of soils 21 (1996), S. 271-276 
    ISSN: 1432-0789
    Schlagwort(e): Key words15N transformations ; Crop residues ; Soil texture ; Soil aggregation ; Microbial pool ; Microbial biomass
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract In a greenhouse pot study, we examined the availability of N to grain sorghum from organic and inorganic N sources. The treatments were 15N-labeled clover residues, wheat residues, and fertilizer placed on a sandy clay loam and loamy sand soil surface for an 8-week period. Soil aggregates formed under each soil texture were measured after 8 weeks for each treatment. Significantly greater 15N was taken up and recovered by grain sorghum in sandy clay loam pots compared with loamy sand pots. Greater 15N recovery was consistently observed with the inorganic source than the organic sources regardless of soil texture or time. Microbial biomass C and N were significantly greater for sandy clay loam soil compared with the loamy sand. Microbial biomass 15N was also significantly greater in the sandy clay loam treatment compared to the loamy sand. The fertilizer treatment initially had the greatest pool of microbial biomass 15N but decreased with time. The crop residue treatments generally had less microbial biomass 15N with time. The crop residues and soil texture had a significant effect on the water-stable aggregates formed after 8 weeks of treatments. Significantly greater water-stable aggregates were formed in the sandy clay loam than the loamy sand. Approximately 20% greater water-stable aggregates were formed under the crop residue treatments compared to the fertilizer only treatment. Soil texture seemed to be one of the most important factors affecting the availability of N from organic or inorganic N sources in these soils.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 1432-0789
    Schlagwort(e): Fatty acids ; Phospholipids ; Lipopolysaccharides ; Microbial biomass ; Gram-positive bacteria
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract Several soils subject to different cultivation and management practices were examined by analysis of fatty acid profiles derived from phospholipids and lipopolysaccharides, using an improved sequential method which is capable of measuring ester-linked and non-ester-linked phospholipid fatty acids (EL-PLFA, NEL-PLFA, respectively) and the hydroxy fatty acids in lipopolysaccharides. A good correlation was obtained (r〉0.90) between the soil biomass and total EL-PLFA in the soils investigated, which ranged from forest soils to a variety of agricultural soils. Elucidation of the composition of the community structure was an additional task. Eukaryotes can be differentiated from bacteria by the presence of polyunsaturated and ω-hydroxy fatty acids, both of which were much more abundant in the OF layer of the forest soil than in the remaining samples. A relatively low proportion of monomethyl branched-chain saturated fatty acids was obtained in the forest OF horizon, these being indicators for Gram-positive bacteria and actinomycetes. Various subclasses of proteobacteria produce β and mid-chain hydroxy fatty acids, which occur primarily in agricultural soils. The ratios between monounsaturated fatty acids and saturated fatty acids seem to be very useful parameters of soil environmental conditions. In addition, on the basis of the differences in composition of the NEL-PLFA and hydroxy fatty acids of lipopolysaccharides, clear indications for the community structure of various soils were obtained. In the forest soils much more abundant anaerobic micro-organisms and relatively less abundant proteobacteria were present than in the other soils. In the cultivated soils, however, the proportion of Gram-negative bacteria was considerably higher. Furthermore, eukaryotes appeared to be pre-dominant in the soils once used for a manure deposit site.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Springer
    Biology and fertility of soils 19 (1995), S. 177-185 
    ISSN: 1432-0789
    Schlagwort(e): Excreta ; Fertiliser ; Microbial biomass ; Nitrogen ; Silvopastoral
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract This paper describes a field study to assess the effect of increasing the frequency of split applications of N fertiliser on the pattern of plant uptake, soil N availability, and microbial biomass C and N. Measurements were taken during the growing season in different positions relative to young trees (Prunus avium L.) in an upland silvopastoral system in its first year after establishment. At fertiliser rates of 72 and 144 kg ha-1 N applied as NH4NO3, increasing the number of split applications increased N uptake by the pasture. Mineral forms of soil N measured 2 weeks after application indicated that residual NH inf4 sup+ -N and total mineral N were also greater in this treatment on certain dates. Soil NO inf3 sup- -N was positively correlated with the soil moisture content, and nitrification reached a maximum in early May and declined rapidly thereafter except within the herbicide-treated areas around the trees where soil moisture had been conserved. Results of the study suggest that high NO inf3 sup- -N in herbicide-treated areas was probably caused by mineralisation of grass residues and low uptake by the tree rather than by preferential urine excretion by sheep sheltering beside the trees. Mean microbial biomass C and N values of 894 and 213 kg ha-1, respectively, were obtained. Microbial C was slightly increased by the higher frequency of split applications at 144 kg ha-1 N and was probably related to the greater herbage production with this treatment. Microbial N was not significantly affected by the N treatments. Both microbial biomass C and N increased during the growing season, resulting in the net immobilisation of at least 45 kg ha-1 N which was later released during the autumn.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    ISSN: 1432-0789
    Schlagwort(e): Phospholipids ; Microbial biomass ; Phosphatase ; Cropping systems ; Long-term experiments Prairie
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract In agricultural ecosystems that have had consistent cropping histories, standard microbial methods may be used to evaluate past and present practices. Our objective was to evaluate several microbial methods that best indicate cropping histories and soil quality on long-term plots. We selected soil microbial carbon (C), phospholipid analyses, direct counts of total fungal and bacterial biomass, and soil enzymes (phosphatases) to measure direct and indirect microbial activity on the Sanborn Field and Tucker Prairie. The Sanborn Field has been under various cropping and management practices since 1888 and the Tucker Prairie is an uncultivated site. Seven different plots were chosen on the Sanborn Field and random samples were taken in the summit area on the Tucker Prairie, which represented a reference site. Soil microbial biomass C, phospholipids, and enzyme activity were reflective of the cropping and management histories observed on the Sanborn Field. Enzymatic activity was highly correlated to soil organic matter. The direct counts of fungal and bacterial biomass showed that fungal populations dominated these soils, which may be attributed to soil pH. Soil microbial biomass C and enzyme assays seemed to be better potential indicators of cropping histories than the other methods tested in the long-term plots.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    ISSN: 1432-0789
    Schlagwort(e): Key words Defoliation ; Microbial biomass ; Microbial populations ; Dehydrogenase activity ; Respiration ; Bacteria ; Fungi ; Upland grassland ; Upland soil ; Pseudomonas spp.
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract A microcosm study was conducted to investigate the effect of continuous plant defoliation on the composition and activity of microbial populations in the rhizosphere of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens). Continuous defoliation of ryegrass and clover resulted in significant (P〈0.01) increases in soil microbial biomass, although whilst increases were measured from day 2 in soil sown with clover significant increases were only seen from day 21 in soil sown with ryegrass. These increases were paralleled, from day 10 onwards, by increases in the numbers of culturable bacteria. Numbers of Pseudomonas spp. also increased in the later stages of the study. No influence on culturable fungal populations was detected. Whilst shifts in the composition of the microbial populations were measured in response to defoliation there was little effect on microbial activity. No changes in either dehydrogenase activity or microbial respiration in the rhizosphere of ryegrass or clover were measured in response to defoliation, but both dehydrogenase activity and microbial respiration were greater in ryegrass than clover when values over the whole study were combined. Continuous defoliation resulted in significant (P〈0.001) reductions in the root dry weight of ryegrass and clover, of the order 19% and 16%, respectively.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...