ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-03-28
    Description: T helper cells that produce IL-17 (T(H)17 cells) promote autoimmunity in mice and have been implicated in the pathogenesis of human inflammatory diseases. At mucosal surfaces, T(H)17 cells are thought to protect the host from infection, whereas regulatory T (T(reg)) cells control immune responses and inflammation triggered by the resident microflora. Differentiation of both cell types requires transforming growth factor-beta (TGF-beta), but depends on distinct transcription factors: RORgammat (encoded by Rorc(gammat)) for T(H)17 cells and Foxp3 for T(reg) cells. How TGF-beta regulates the differentiation of T cells with opposing activities has been perplexing. Here we demonstrate that, together with pro-inflammatory cytokines, TGF-beta orchestrates T(H)17 cell differentiation in a concentration-dependent manner. At low concentrations, TGF-beta synergizes with interleukin (IL)-6 and IL-21 (refs 9-11) to promote IL-23 receptor (Il23r) expression, favouring T(H)17 cell differentiation. High concentrations of TGF-beta repress IL23r expression and favour Foxp3+ T(reg) cells. RORgammat and Foxp3 are co-expressed in naive CD4+ T cells exposed to TGF-beta and in a subset of T cells in the small intestinal lamina propria of the mouse. In vitro, TGF-beta-induced Foxp3 inhibits RORgammat function, at least in part through their interaction. Accordingly, lamina propria T cells that co-express both transcription factors produce less IL-17 (also known as IL-17a) than those that express RORgammat alone. IL-6, IL-21 and IL-23 relieve Foxp3-mediated inhibition of RORgammat, thereby promoting T(H)17 cell differentiation. Therefore, the decision of antigen-stimulated cells to differentiate into either T(H)17 or T(reg) cells depends on the cytokine-regulated balance of RORgammat and Foxp3.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597437/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597437/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Liang -- Lopes, Jared E -- Chong, Mark M W -- Ivanov, Ivaylo I -- Min, Roy -- Victora, Gabriel D -- Shen, Yuelei -- Du, Jianguang -- Rubtsov, Yuri P -- Rudensky, Alexander Y -- Ziegler, Steven F -- Littman, Dan R -- AI48779/AI/NIAID NIH HHS/ -- R01 AI048779/AI/NIAID NIH HHS/ -- R01 AI048779-05/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 May 8;453(7192):236-40. doi: 10.1038/nature06878. Epub 2008 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18368049" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/drug effects ; Cell Line ; Cells, Cultured ; Forkhead Transcription Factors/genetics/*metabolism ; Gene Expression Regulation/drug effects ; Humans ; Interleukin-17/biosynthesis/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Nuclear Receptor Subfamily 1, Group F, Member 3 ; Receptors, Interleukin/genetics/metabolism ; Receptors, Retinoic Acid/*antagonists & inhibitors/genetics/metabolism ; Receptors, Thyroid Hormone/*antagonists & inhibitors/genetics/metabolism ; T-Lymphocytes, Helper-Inducer/*cytology/*drug effects/metabolism ; Transforming Growth Factor beta/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-04-18
    Description: DNA cytosine methylation is crucial for retrotransposon silencing and mammalian development. In a computational search for enzymes that could modify 5-methylcytosine (5mC), we identified TET proteins as mammalian homologs of the trypanosome proteins JBP1 and JBP2, which have been proposed to oxidize the 5-methyl group of thymine. We show here that TET1, a fusion partner of the MLL gene in acute myeloid leukemia, is a 2-oxoglutarate (2OG)- and Fe(II)-dependent enzyme that catalyzes conversion of 5mC to 5-hydroxymethylcytosine (hmC) in cultured cells and in vitro. hmC is present in the genome of mouse embryonic stem cells, and hmC levels decrease upon RNA interference-mediated depletion of TET1. Thus, TET proteins have potential roles in epigenetic regulation through modification of 5mC to hmC.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715015/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715015/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tahiliani, Mamta -- Koh, Kian Peng -- Shen, Yinghua -- Pastor, William A -- Bandukwala, Hozefa -- Brudno, Yevgeny -- Agarwal, Suneet -- Iyer, Lakshminarayan M -- Liu, David R -- Aravind, L -- Rao, Anjana -- AI44432/AI/NIAID NIH HHS/ -- K08 HL089150/HL/NHLBI NIH HHS/ -- R01 GM065865/GM/NIGMS NIH HHS/ -- R01 GM065865-05A1/GM/NIGMS NIH HHS/ -- R01GM065865/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 May 15;324(5929):930-5. doi: 10.1126/science.1170116. Epub 2009 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School and Immune Disease Institute, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372391" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Cytosine/*analogs & derivatives/analysis/metabolism ; DNA/chemistry/*metabolism ; DNA Methylation ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Dinucleoside Phosphates/metabolism ; Embryonic Stem Cells/chemistry/metabolism ; Humans ; Hydroxylation ; Mass Spectrometry ; Mice ; Molecular Sequence Data ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; RNA Interference ; Sequence Alignment ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-02-02
    Description: In the mammalian ovary, progressive activation of primordial follicles from the dormant pool serves as the source of fertilizable ova. Menopause, or the end of female reproductive life, occurs when the primordial follicle pool is exhausted. However, the molecular mechanisms underlying follicle activation are poorly understood. We provide genetic evidence that in mice lacking PTEN (phosphatase and tensin homolog deleted on chromosome 10) in oocytes, a major negative regulator of phosphatidylinositol 3-kinase (PI3K), the entire primordial follicle pool becomes activated. Subsequently, all primordial follicles become depleted in early adulthood, causing premature ovarian failure (POF). Our results show that the mammalian oocyte serves as the headquarters of programming of follicle activation and that the oocyte PTEN-PI3K pathway governs follicle activation through control of initiation of oocyte growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reddy, Pradeep -- Liu, Lian -- Adhikari, Deepak -- Jagarlamudi, Krishna -- Rajareddy, Singareddy -- Shen, Yan -- Du, Chun -- Tang, Wenli -- Hamalainen, Tuula -- Peng, Stanford L -- Lan, Zi-Jian -- Cooney, Austin J -- Huhtaniemi, Ilpo -- Liu, Kui -- New York, N.Y. -- Science. 2008 Feb 1;319(5863):611-3. doi: 10.1126/science.1152257.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Biophysics, Umea University, SE-901 87 Umea, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18239123" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Follicular Atresia ; Mice ; Mice, Transgenic ; Oocytes/cytology/growth & development/*physiology ; Organ Size ; Ovarian Follicle/cytology/*physiology ; Ovary/anatomy & histology/physiology ; Ovulation ; PTEN Phosphohydrolase/genetics/*physiology ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Primary Ovarian Insufficiency/physiopathology ; Protein Kinases/metabolism ; Ribosomal Protein S6/metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-10-17
    Description: Chondroitin sulfate proteoglycans (CSPGs) present a barrier to axon regeneration. However, no specific receptor for the inhibitory effect of CSPGs has been identified. We showed that a transmembrane protein tyrosine phosphatase, PTPsigma, binds with high affinity to neural CSPGs. Binding involves the chondroitin sulfate chains and a specific site on the first immunoglobulin-like domain of PTPsigma. In culture, PTPsigma(-/-) neurons show reduced inhibition by CSPG. A PTPsigma fusion protein probe can detect cognate ligands that are up-regulated specifically at neural lesion sites. After spinal cord injury, PTPsigma gene disruption enhanced the ability of axons to penetrate regions containing CSPG. These results indicate that PTPsigma can act as a receptor for CSPGs and may provide new therapeutic approaches to neural regeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811318/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811318/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Yingjie -- Tenney, Alan P -- Busch, Sarah A -- Horn, Kevin P -- Cuascut, Fernando X -- Liu, Kai -- He, Zhigang -- Silver, Jerry -- Flanagan, John G -- R01 EY011559/EY/NEI NIH HHS/ -- R01 NS025713/NS/NINDS NIH HHS/ -- R37 HD029417/HD/NICHD NIH HHS/ -- R37 NS025713/NS/NINDS NIH HHS/ -- R37 NS025713-22/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 23;326(5952):592-6. doi: 10.1126/science.1178310. Epub 2009 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19833921" target="_blank"〉PubMed〈/a〉
    Keywords: Aggrecans/metabolism ; Animals ; Astrocytes/metabolism ; Axons/physiology ; Binding Sites ; Cells, Cultured ; Chondroitin Sulfate Proteoglycans/chemistry/*metabolism ; Chondroitin Sulfates/metabolism ; Female ; Ganglia, Spinal/cytology/metabolism ; Ligands ; Mice ; *Nerve Regeneration ; Nerve Tissue Proteins/chemistry/*metabolism ; Neurites/physiology ; Neurons/*physiology ; Protein Binding ; Protein Interaction Domains and Motifs ; Proteoglycans/chemistry/*metabolism ; Receptor-Like Protein Tyrosine Phosphatases, Class ; 2/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Spinal Cord/metabolism/pathology ; Spinal Cord Injuries/*metabolism/pathology/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...