ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Female  (131)
  • Organic Chemistry
  • Nature Publishing Group (NPG)  (131)
  • 2005-2009  (131)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2008-10-25
    Description: Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers--including NF1, APC, RB1 and ATM--and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694412/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694412/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, Li -- Getz, Gad -- Wheeler, David A -- Mardis, Elaine R -- McLellan, Michael D -- Cibulskis, Kristian -- Sougnez, Carrie -- Greulich, Heidi -- Muzny, Donna M -- Morgan, Margaret B -- Fulton, Lucinda -- Fulton, Robert S -- Zhang, Qunyuan -- Wendl, Michael C -- Lawrence, Michael S -- Larson, David E -- Chen, Ken -- Dooling, David J -- Sabo, Aniko -- Hawes, Alicia C -- Shen, Hua -- Jhangiani, Shalini N -- Lewis, Lora R -- Hall, Otis -- Zhu, Yiming -- Mathew, Tittu -- Ren, Yanru -- Yao, Jiqiang -- Scherer, Steven E -- Clerc, Kerstin -- Metcalf, Ginger A -- Ng, Brian -- Milosavljevic, Aleksandar -- Gonzalez-Garay, Manuel L -- Osborne, John R -- Meyer, Rick -- Shi, Xiaoqi -- Tang, Yuzhu -- Koboldt, Daniel C -- Lin, Ling -- Abbott, Rachel -- Miner, Tracie L -- Pohl, Craig -- Fewell, Ginger -- Haipek, Carrie -- Schmidt, Heather -- Dunford-Shore, Brian H -- Kraja, Aldi -- Crosby, Seth D -- Sawyer, Christopher S -- Vickery, Tammi -- Sander, Sacha -- Robinson, Jody -- Winckler, Wendy -- Baldwin, Jennifer -- Chirieac, Lucian R -- Dutt, Amit -- Fennell, Tim -- Hanna, Megan -- Johnson, Bruce E -- Onofrio, Robert C -- Thomas, Roman K -- Tonon, Giovanni -- Weir, Barbara A -- Zhao, Xiaojun -- Ziaugra, Liuda -- Zody, Michael C -- Giordano, Thomas -- Orringer, Mark B -- Roth, Jack A -- Spitz, Margaret R -- Wistuba, Ignacio I -- Ozenberger, Bradley -- Good, Peter J -- Chang, Andrew C -- Beer, David G -- Watson, Mark A -- Ladanyi, Marc -- Broderick, Stephen -- Yoshizawa, Akihiko -- Travis, William D -- Pao, William -- Province, Michael A -- Weinstock, George M -- Varmus, Harold E -- Gabriel, Stacey B -- Lander, Eric S -- Gibbs, Richard A -- Meyerson, Matthew -- Wilson, Richard K -- P50 CA070907/CA/NCI NIH HHS/ -- R01 CA154365/CA/NCI NIH HHS/ -- U19 CA084953/CA/NCI NIH HHS/ -- U19 CA084953-050003/CA/NCI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54 HG003067-04/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- England -- Nature. 2008 Oct 23;455(7216):1069-75. doi: 10.1038/nature07423.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Genome Center at Washington University, Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948947" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma, Bronchiolo-Alveolar/*genetics ; Female ; Gene Dosage ; Gene Expression Regulation, Neoplastic ; Genes, Tumor Suppressor ; Humans ; Lung Neoplasms/*genetics ; Male ; Mutation/*genetics ; Proto-Oncogenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-05-10
    Description: We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803040/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803040/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warren, Wesley C -- Hillier, LaDeana W -- Marshall Graves, Jennifer A -- Birney, Ewan -- Ponting, Chris P -- Grutzner, Frank -- Belov, Katherine -- Miller, Webb -- Clarke, Laura -- Chinwalla, Asif T -- Yang, Shiaw-Pyng -- Heger, Andreas -- Locke, Devin P -- Miethke, Pat -- Waters, Paul D -- Veyrunes, Frederic -- Fulton, Lucinda -- Fulton, Bob -- Graves, Tina -- Wallis, John -- Puente, Xose S -- Lopez-Otin, Carlos -- Ordonez, Gonzalo R -- Eichler, Evan E -- Chen, Lin -- Cheng, Ze -- Deakin, Janine E -- Alsop, Amber -- Thompson, Katherine -- Kirby, Patrick -- Papenfuss, Anthony T -- Wakefield, Matthew J -- Olender, Tsviya -- Lancet, Doron -- Huttley, Gavin A -- Smit, Arian F A -- Pask, Andrew -- Temple-Smith, Peter -- Batzer, Mark A -- Walker, Jerilyn A -- Konkel, Miriam K -- Harris, Robert S -- Whittington, Camilla M -- Wong, Emily S W -- Gemmell, Neil J -- Buschiazzo, Emmanuel -- Vargas Jentzsch, Iris M -- Merkel, Angelika -- Schmitz, Juergen -- Zemann, Anja -- Churakov, Gennady -- Kriegs, Jan Ole -- Brosius, Juergen -- Murchison, Elizabeth P -- Sachidanandam, Ravi -- Smith, Carly -- Hannon, Gregory J -- Tsend-Ayush, Enkhjargal -- McMillan, Daniel -- Attenborough, Rosalind -- Rens, Willem -- Ferguson-Smith, Malcolm -- Lefevre, Christophe M -- Sharp, Julie A -- Nicholas, Kevin R -- Ray, David A -- Kube, Michael -- Reinhardt, Richard -- Pringle, Thomas H -- Taylor, James -- Jones, Russell C -- Nixon, Brett -- Dacheux, Jean-Louis -- Niwa, Hitoshi -- Sekita, Yoko -- Huang, Xiaoqiu -- Stark, Alexander -- Kheradpour, Pouya -- Kellis, Manolis -- Flicek, Paul -- Chen, Yuan -- Webber, Caleb -- Hardison, Ross -- Nelson, Joanne -- Hallsworth-Pepin, Kym -- Delehaunty, Kim -- Markovic, Chris -- Minx, Pat -- Feng, Yucheng -- Kremitzki, Colin -- Mitreva, Makedonka -- Glasscock, Jarret -- Wylie, Todd -- Wohldmann, Patricia -- Thiru, Prathapan -- Nhan, Michael N -- Pohl, Craig S -- Smith, Scott M -- Hou, Shunfeng -- Nefedov, Mikhail -- de Jong, Pieter J -- Renfree, Marilyn B -- Mardis, Elaine R -- Wilson, Richard K -- 062023/Wellcome Trust/United Kingdom -- HG002238/HG/NHGRI NIH HHS/ -- MC_U137761446/Medical Research Council/United Kingdom -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA013106-37/CA/NCI NIH HHS/ -- R01 GM59290/GM/NIGMS NIH HHS/ -- R01 HG002939/HG/NHGRI NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG004037-02/HG/NHGRI NIH HHS/ -- R01HG02385/HG/NHGRI NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2008 May 8;453(7192):175-83. doi: 10.1038/nature06936.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genome Sequencing Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA. wwarren@wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18464734" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Dentition ; *Evolution, Molecular ; Female ; Genome/*genetics ; Genomic Imprinting/genetics ; Humans ; Immunity/genetics ; Male ; Mammals/genetics ; MicroRNAs/genetics ; Milk Proteins/genetics ; Phylogeny ; Platypus/*genetics/immunology/physiology ; Receptors, Odorant/genetics ; Repetitive Sequences, Nucleic Acid/genetics ; Reptiles/genetics ; Sequence Analysis, DNA ; Spermatozoa/metabolism ; Venoms/genetics ; Zona Pellucida/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-08-13
    Description: Influenza A viruses cause recurrent outbreaks at local or global scale with potentially severe consequences for human health and the global economy. Recently, a new strain of influenza A virus was detected that causes disease in and transmits among humans, probably owing to little or no pre-existing immunity to the new strain. On 11 June 2009 the World Health Organization declared that the infections caused by the new strain had reached pandemic proportion. Characterized as an influenza A virus of the H1N1 subtype, the genomic segments of the new strain were most closely related to swine viruses. Most human infections with swine-origin H1N1 influenza viruses (S-OIVs) seem to be mild; however, a substantial number of hospitalized individuals do not have underlying health issues, attesting to the pathogenic potential of S-OIVs. To achieve a better assessment of the risk posed by the new virus, we characterized one of the first US S-OIV isolates, A/California/04/09 (H1N1; hereafter referred to as CA04), as well as several other S-OIV isolates, in vitro and in vivo. In mice and ferrets, CA04 and other S-OIV isolates tested replicate more efficiently than a currently circulating human H1N1 virus. In addition, CA04 replicates efficiently in non-human primates, causes more severe pathological lesions in the lungs of infected mice, ferrets and non-human primates than a currently circulating human H1N1 virus, and transmits among ferrets. In specific-pathogen-free miniature pigs, CA04 replicates without clinical symptoms. The assessment of human sera from different age groups suggests that infection with human H1N1 viruses antigenically closely related to viruses circulating in 1918 confers neutralizing antibody activity to CA04. Finally, we show that CA04 is sensitive to approved and experimental antiviral drugs, suggesting that these compounds could function as a first line of defence against the recently declared S-OIV pandemic.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748827/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748827/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Itoh, Yasushi -- Shinya, Kyoko -- Kiso, Maki -- Watanabe, Tokiko -- Sakoda, Yoshihiro -- Hatta, Masato -- Muramoto, Yukiko -- Tamura, Daisuke -- Sakai-Tagawa, Yuko -- Noda, Takeshi -- Sakabe, Saori -- Imai, Masaki -- Hatta, Yasuko -- Watanabe, Shinji -- Li, Chengjun -- Yamada, Shinya -- Fujii, Ken -- Murakami, Shin -- Imai, Hirotaka -- Kakugawa, Satoshi -- Ito, Mutsumi -- Takano, Ryo -- Iwatsuki-Horimoto, Kiyoko -- Shimojima, Masayuki -- Horimoto, Taisuke -- Goto, Hideo -- Takahashi, Kei -- Makino, Akiko -- Ishigaki, Hirohito -- Nakayama, Misako -- Okamatsu, Masatoshi -- Takahashi, Kazuo -- Warshauer, David -- Shult, Peter A -- Saito, Reiko -- Suzuki, Hiroshi -- Furuta, Yousuke -- Yamashita, Makoto -- Mitamura, Keiko -- Nakano, Kunio -- Nakamura, Morio -- Brockman-Schneider, Rebecca -- Mitamura, Hiroshi -- Yamazaki, Masahiko -- Sugaya, Norio -- Suresh, M -- Ozawa, Makoto -- Neumann, Gabriele -- Gern, James -- Kida, Hiroshi -- Ogasawara, Kazumasa -- Kawaoka, Yoshihiro -- HHNSN266200700010C/NS/NINDS NIH HHS/ -- HHSN266200700010C/PHS HHS/ -- HHSN272200800060C/AI/NIAID NIH HHS/ -- R01 AI069274/AI/NIAID NIH HHS/ -- R01 AI069274-04/AI/NIAID NIH HHS/ -- U19 AI070503/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Aug 20;460(7258):1021-5. doi: 10.1038/nature08260.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Shiga University of Medical Science, Ohtsu, Shiga 520-2192, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19672242" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/immunology ; Antiviral Agents/pharmacology ; Cell Line ; Dogs ; Female ; Ferrets/virology ; HN Protein/metabolism ; Humans ; Influenza A Virus, H1N1 Subtype/drug effects/enzymology/pathogenicity/*physiology ; Lung/immunology/pathology/virology ; Macaca fascicularis/immunology/virology ; Male ; Mice ; Mice, Inbred BALB C ; Neutralization Tests ; Orthomyxoviridae Infections/immunology/transmission/virology ; Primate Diseases/pathology/virology ; Swine/*virology ; Swine Diseases/pathology/virology ; Swine, Miniature/virology ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-07-22
    Description: Acquired uniparental disomy (aUPD) is a common feature of cancer genomes, leading to loss of heterozygosity. aUPD is associated not only with loss-of-function mutations of tumour suppressor genes, but also with gain-of-function mutations of proto-oncogenes. Here we show unique gain-of-function mutations of the C-CBL (also known as CBL) tumour suppressor that are tightly associated with aUPD of the 11q arm in myeloid neoplasms showing myeloproliferative features. The C-CBL proto-oncogene, a cellular homologue of v-Cbl, encodes an E3 ubiquitin ligase and negatively regulates signal transduction of tyrosine kinases. Homozygous C-CBL mutations were found in most 11q-aUPD-positive myeloid malignancies. Although the C-CBL mutations were oncogenic in NIH3T3 cells, c-Cbl was shown to functionally and genetically act as a tumour suppressor. C-CBL mutants did not have E3 ubiquitin ligase activity, but inhibited that of wild-type C-CBL and CBL-B (also known as CBLB), leading to prolonged activation of tyrosine kinases after cytokine stimulation. c-Cbl(-/-) haematopoietic stem/progenitor cells (HSPCs) showed enhanced sensitivity to a variety of cytokines compared to c-Cbl(+/+) HSPCs, and transduction of C-CBL mutants into c-Cbl(-/-) HSPCs further augmented their sensitivities to a broader spectrum of cytokines, including stem-cell factor (SCF, also known as KITLG), thrombopoietin (TPO, also known as THPO), IL3 and FLT3 ligand (FLT3LG), indicating the presence of a gain-of-function that could not be attributed to a simple loss-of-function. The gain-of-function effects of C-CBL mutants on cytokine sensitivity of HSPCs largely disappeared in a c-Cbl(+/+) background or by co-transduction of wild-type C-CBL, which suggests the pathogenic importance of loss of wild-type C-CBL alleles found in most cases of C-CBL-mutated myeloid neoplasms. Our findings provide a new insight into a role of gain-of-function mutations of a tumour suppressor associated with aUPD in the pathogenesis of some myeloid cancer subsets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanada, Masashi -- Suzuki, Takahiro -- Shih, Lee-Yung -- Otsu, Makoto -- Kato, Motohiro -- Yamazaki, Satoshi -- Tamura, Azusa -- Honda, Hiroaki -- Sakata-Yanagimoto, Mamiko -- Kumano, Keiki -- Oda, Hideaki -- Yamagata, Tetsuya -- Takita, Junko -- Gotoh, Noriko -- Nakazaki, Kumi -- Kawamata, Norihiko -- Onodera, Masafumi -- Nobuyoshi, Masaharu -- Hayashi, Yasuhide -- Harada, Hiroshi -- Kurokawa, Mineo -- Chiba, Shigeru -- Mori, Hiraku -- Ozawa, Keiya -- Omine, Mitsuhiro -- Hirai, Hisamaru -- Nakauchi, Hiromitsu -- Koeffler, H Phillip -- Ogawa, Seishi -- 2R01CA026038-30/CA/NCI NIH HHS/ -- England -- Nature. 2009 Aug 13;460(7257):904-8. doi: 10.1038/nature08240. Epub 2009 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genomics Project, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19620960" target="_blank"〉PubMed〈/a〉
    Keywords: Allelic Imbalance ; Amino Acid Sequence ; Animals ; Base Sequence ; Chromosomes, Human, Pair 11/genetics ; Female ; *Genes, Tumor Suppressor ; Humans ; Leukemia, Myeloid/*genetics/metabolism/pathology ; Male ; Mice ; Mice, Knockout ; Mice, Nude ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/*metabolism ; Mutation ; NIH 3T3 Cells ; Neoplasm Transplantation ; Oncogenes/genetics ; Phosphorylation ; Protein Conformation ; Proto-Oncogene Proteins c-cbl/antagonists & ; inhibitors/chemistry/deficiency/*genetics/*metabolism ; Ubiquitination ; Uniparental Disomy/genetics ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-10-04
    Description: Human immunodeficiency virus type 1 (HIV-1) sequences that pre-date the recognition of AIDS are critical to defining the time of origin and the timescale of virus evolution. A viral sequence from 1959 (ZR59) is the oldest known HIV-1 infection. Other historically documented sequences, important calibration points to convert evolutionary distance into time, are lacking, however; ZR59 is the only one sampled before 1976. Here we report the amplification and characterization of viral sequences from a Bouin's-fixed paraffin-embedded lymph node biopsy specimen obtained in 1960 from an adult female in Leopoldville, Belgian Congo (now Kinshasa, Democratic Republic of the Congo (DRC)), and we use them to conduct the first comparative evolutionary genetic study of early pre-AIDS epidemic HIV-1 group M viruses. Phylogenetic analyses position this viral sequence (DRC60) closest to the ancestral node of subtype A (excluding A2). Relaxed molecular clock analyses incorporating DRC60 and ZR59 date the most recent common ancestor of the M group to near the beginning of the twentieth century. The sizeable genetic distance between DRC60 and ZR59 directly demonstrates that diversification of HIV-1 in west-central Africa occurred long before the recognized AIDS pandemic. The recovery of viral gene sequences from decades-old paraffin-embedded tissues opens the door to a detailed palaeovirological investigation of the evolutionary history of HIV-1 that is not accessible by other methods.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682493/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682493/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worobey, Michael -- Gemmel, Marlea -- Teuwen, Dirk E -- Haselkorn, Tamara -- Kunstman, Kevin -- Bunce, Michael -- Muyembe, Jean-Jacques -- Kabongo, Jean-Marie M -- Kalengayi, Raphael M -- Van Marck, Eric -- Gilbert, M Thomas P -- Wolinsky, Steven M -- R21 AI065371/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Oct 2;455(7213):661-4. doi: 10.1038/nature07390.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA. worobey@email.arizona.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18833279" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Canada ; Democratic Republic of the Congo/epidemiology ; *Evolution, Molecular ; Female ; Genetic Variation/*genetics ; HIV Infections/*epidemiology/pathology/*virology ; HIV-1/classification/*genetics/*isolation & purification ; History, 20th Century ; Humans ; Male ; Microtomy ; Molecular Sequence Data ; Paraffin Embedding ; Phylogeny ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Analysis, DNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-02-06
    Description: The metabolism of oxygen, although central to life, produces reactive oxygen species (ROS) that have been implicated in processes as diverse as cancer, cardiovascular disease and ageing. It has recently been shown that central nervous system stem cells and haematopoietic stem cells and early progenitors contain lower levels of ROS than their more mature progeny, and that these differences are critical for maintaining stem cell function. We proposed that epithelial tissue stem cells and their cancer stem cell (CSC) counterparts may also share this property. Here we show that normal mammary epithelial stem cells contain lower concentrations of ROS than their more mature progeny cells. Notably, subsets of CSCs in some human and murine breast tumours contain lower ROS levels than corresponding non-tumorigenic cells (NTCs). Consistent with ROS being critical mediators of ionizing-radiation-induced cell killing, CSCs in these tumours develop less DNA damage and are preferentially spared after irradiation compared to NTCs. Lower ROS levels in CSCs are associated with increased expression of free radical scavenging systems. Pharmacological depletion of ROS scavengers in CSCs markedly decreases their clonogenicity and results in radiosensitization. These results indicate that, similar to normal tissue stem cells, subsets of CSCs in some tumours contain lower ROS levels and enhanced ROS defences compared to their non-tumorigenic progeny, which may contribute to tumour radioresistance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778612/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778612/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diehn, Maximilian -- Cho, Robert W -- Lobo, Neethan A -- Kalisky, Tomer -- Dorie, Mary Jo -- Kulp, Angela N -- Qian, Dalong -- Lam, Jessica S -- Ailles, Laurie E -- Wong, Manzhi -- Joshua, Benzion -- Kaplan, Michael J -- Wapnir, Irene -- Dirbas, Frederick M -- Somlo, George -- Garberoglio, Carlos -- Paz, Benjamin -- Shen, Jeannie -- Lau, Sean K -- Quake, Stephen R -- Brown, J Martin -- Weissman, Irving L -- Clarke, Michael F -- R01 CA100225/CA/NCI NIH HHS/ -- R01 CA100225-05/CA/NCI NIH HHS/ -- U54 CA126524/CA/NCI NIH HHS/ -- U54 CA126524-04/CA/NCI NIH HHS/ -- England -- Nature. 2009 Apr 9;458(7239):780-3. doi: 10.1038/nature07733.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194462" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/physiopathology ; Cells, Cultured ; DNA Damage/genetics/radiation effects ; Female ; Gene Expression ; Humans ; Mammary Glands, Human/cytology/metabolism ; Mice ; Mice, Inbred C57BL ; Neoplastic Stem Cells/*metabolism/*radiation effects ; Radiation Tolerance/*physiology ; Reactive Oxygen Species/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-12-17
    Description: Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951497/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951497/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Ruiqiang -- Fan, Wei -- Tian, Geng -- Zhu, Hongmei -- He, Lin -- Cai, Jing -- Huang, Quanfei -- Cai, Qingle -- Li, Bo -- Bai, Yinqi -- Zhang, Zhihe -- Zhang, Yaping -- Wang, Wen -- Li, Jun -- Wei, Fuwen -- Li, Heng -- Jian, Min -- Li, Jianwen -- Zhang, Zhaolei -- Nielsen, Rasmus -- Li, Dawei -- Gu, Wanjun -- Yang, Zhentao -- Xuan, Zhaoling -- Ryder, Oliver A -- Leung, Frederick Chi-Ching -- Zhou, Yan -- Cao, Jianjun -- Sun, Xiao -- Fu, Yonggui -- Fang, Xiaodong -- Guo, Xiaosen -- Wang, Bo -- Hou, Rong -- Shen, Fujun -- Mu, Bo -- Ni, Peixiang -- Lin, Runmao -- Qian, Wubin -- Wang, Guodong -- Yu, Chang -- Nie, Wenhui -- Wang, Jinhuan -- Wu, Zhigang -- Liang, Huiqing -- Min, Jiumeng -- Wu, Qi -- Cheng, Shifeng -- Ruan, Jue -- Wang, Mingwei -- Shi, Zhongbin -- Wen, Ming -- Liu, Binghang -- Ren, Xiaoli -- Zheng, Huisong -- Dong, Dong -- Cook, Kathleen -- Shan, Gao -- Zhang, Hao -- Kosiol, Carolin -- Xie, Xueying -- Lu, Zuhong -- Zheng, Hancheng -- Li, Yingrui -- Steiner, Cynthia C -- Lam, Tommy Tsan-Yuk -- Lin, Siyuan -- Zhang, Qinghui -- Li, Guoqing -- Tian, Jing -- Gong, Timing -- Liu, Hongde -- Zhang, Dejin -- Fang, Lin -- Ye, Chen -- Zhang, Juanbin -- Hu, Wenbo -- Xu, Anlong -- Ren, Yuanyuan -- Zhang, Guojie -- Bruford, Michael W -- Li, Qibin -- Ma, Lijia -- Guo, Yiran -- An, Na -- Hu, Yujie -- Zheng, Yang -- Shi, Yongyong -- Li, Zhiqiang -- Liu, Qing -- Chen, Yanling -- Zhao, Jing -- Qu, Ning -- Zhao, Shancen -- Tian, Feng -- Wang, Xiaoling -- Wang, Haiyin -- Xu, Lizhi -- Liu, Xiao -- Vinar, Tomas -- Wang, Yajun -- Lam, Tak-Wah -- Yiu, Siu-Ming -- Liu, Shiping -- Zhang, Hemin -- Li, Desheng -- Huang, Yan -- Wang, Xia -- Yang, Guohua -- Jiang, Zhi -- Wang, Junyi -- Qin, Nan -- Li, Li -- Li, Jingxiang -- Bolund, Lars -- Kristiansen, Karsten -- Wong, Gane Ka-Shu -- Olson, Maynard -- Zhang, Xiuqing -- Li, Songgang -- Yang, Huanming -- Wang, Jian -- Wang, Jun -- R01 HG003229/HG/NHGRI NIH HHS/ -- R01 HG003229-05/HG/NHGRI NIH HHS/ -- England -- Nature. 2010 Jan 21;463(7279):311-7. doi: 10.1038/nature08696. Epub 2009 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BGI-Shenzhen, Shenzhen 518083, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010809" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; China ; Conserved Sequence/genetics ; Contig Mapping ; Diet/veterinary ; Dogs ; Evolution, Molecular ; Female ; Fertility/genetics/physiology ; Genome/*genetics ; *Genomics ; Heterozygote ; Humans ; Multigene Family/genetics ; Polymorphism, Single Nucleotide/genetics ; Receptors, G-Protein-Coupled/genetics ; Sequence Alignment ; Sequence Analysis, DNA ; Synteny/genetics ; Ursidae/classification/*genetics/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-04-11
    Description: The clinical development of an inhibitor of cellular proteasome function suggests that compounds targeting other components of the ubiquitin-proteasome system might prove useful for the treatment of human malignancies. NEDD8-activating enzyme (NAE) is an essential component of the NEDD8 conjugation pathway that controls the activity of the cullin-RING subtype of ubiquitin ligases, thereby regulating the turnover of a subset of proteins upstream of the proteasome. Substrates of cullin-RING ligases have important roles in cellular processes associated with cancer cell growth and survival pathways. Here we describe MLN4924, a potent and selective inhibitor of NAE. MLN4924 disrupts cullin-RING ligase-mediated protein turnover leading to apoptotic death in human tumour cells by a new mechanism of action, the deregulation of S-phase DNA synthesis. MLN4924 suppressed the growth of human tumour xenografts in mice at compound exposures that were well tolerated. Our data suggest that NAE inhibitors may hold promise for the treatment of cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soucy, Teresa A -- Smith, Peter G -- Milhollen, Michael A -- Berger, Allison J -- Gavin, James M -- Adhikari, Sharmila -- Brownell, James E -- Burke, Kristine E -- Cardin, David P -- Critchley, Stephen -- Cullis, Courtney A -- Doucette, Amanda -- Garnsey, James J -- Gaulin, Jeffrey L -- Gershman, Rachel E -- Lublinsky, Anna R -- McDonald, Alice -- Mizutani, Hirotake -- Narayanan, Usha -- Olhava, Edward J -- Peluso, Stephane -- Rezaei, Mansoureh -- Sintchak, Michael D -- Talreja, Tina -- Thomas, Michael P -- Traore, Tary -- Vyskocil, Stepan -- Weatherhead, Gabriel S -- Yu, Jie -- Zhang, Julie -- Dick, Lawrence R -- Claiborne, Christopher F -- Rolfe, Mark -- Bolen, Joseph B -- Langston, Steven P -- England -- Nature. 2009 Apr 9;458(7239):732-6. doi: 10.1038/nature07884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Discovery, Millennium Pharmaceuticals, Inc., 40 Landsdowne Street, Cambridge, Massachusetts 02139, USA. teresa.soucy@mpi.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19360080" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/*pharmacology ; Cell Line, Tumor ; Cells, Cultured ; Cullin Proteins/metabolism ; Cyclopentanes/*pharmacology ; Enzyme Inhibitors/*pharmacology ; Female ; Humans ; Mice ; Neoplasms/*drug therapy ; Proteasome Inhibitors ; Pyrimidines/*pharmacology ; Transplantation, Heterologous ; Ubiquitin-Activating Enzymes/*metabolism ; Ubiquitins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-08-30
    Description: Neuroblastoma is a childhood cancer that can be inherited, but the genetic aetiology is largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase (ALK) gene explain most hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at chromosome bands 2p23-24 using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate germline missense mutations in the tyrosine kinase domain of ALK that segregated with the disease in eight separate families. Resequencing in 194 high-risk neuroblastoma samples showed somatically acquired mutations in the tyrosine kinase domain in 12.4% of samples. Nine of the ten mutations map to critical regions of the kinase domain and were predicted, with high probability, to be oncogenic drivers. Mutations resulted in constitutive phosphorylation, and targeted knockdown of ALK messenger RNA resulted in profound inhibition of growth in all cell lines harbouring mutant or amplified ALK, as well as in two out of six wild-type cell lines for ALK. Our results demonstrate that heritable mutations of ALK are the main cause of familial neuroblastoma, and that germline or acquired activation of this cell-surface kinase is a tractable therapeutic target for this lethal paediatric malignancy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2672043/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2672043/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mosse, Yael P -- Laudenslager, Marci -- Longo, Luca -- Cole, Kristina A -- Wood, Andrew -- Attiyeh, Edward F -- Laquaglia, Michael J -- Sennett, Rachel -- Lynch, Jill E -- Perri, Patrizia -- Laureys, Genevieve -- Speleman, Frank -- Kim, Cecilia -- Hou, Cuiping -- Hakonarson, Hakon -- Torkamani, Ali -- Schork, Nicholas J -- Brodeur, Garrett M -- Tonini, Gian P -- Rappaport, Eric -- Devoto, Marcella -- Maris, John M -- K08 CA111733/CA/NCI NIH HHS/ -- K08 CA111733-04/CA/NCI NIH HHS/ -- K08-111733/PHS HHS/ -- R01 CA078545/CA/NCI NIH HHS/ -- R01 CA078545-09/CA/NCI NIH HHS/ -- R01 CA124709/CA/NCI NIH HHS/ -- R01-CA78454/CA/NCI NIH HHS/ -- R01-CA87847/CA/NCI NIH HHS/ -- U10 CA098543/CA/NCI NIH HHS/ -- U10 CA098543-06/CA/NCI NIH HHS/ -- England -- Nature. 2008 Oct 16;455(7215):930-5. doi: 10.1038/nature07261. Epub 2008 Aug 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18724359" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Line, Tumor ; Child ; Chromosomes, Human, Pair 2/genetics ; Female ; Gene Dosage ; Gene Expression Regulation, Neoplastic ; Genetic Predisposition to Disease/*genetics ; Germ-Line Mutation/genetics ; Humans ; Male ; Models, Molecular ; Molecular Sequence Data ; Mutation/*genetics ; Neuroblastoma/*enzymology/*genetics ; Pedigree ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/chemistry/deficiency/*genetics ; Receptor Protein-Tyrosine Kinases
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-03-28
    Description: microRNAs (miRNAs) are small regulatory RNAs that are important in development and disease and therefore represent a potential new class of targets for therapeutic intervention. Despite recent progress in silencing of miRNAs in rodents, the development of effective and safe approaches for sequence-specific antagonism of miRNAs in vivo remains a significant scientific and therapeutic challenge. Moreover, there are no reports of miRNA antagonism in primates. Here we show that the simple systemic delivery of a unconjugated, PBS-formulated locked-nucleic-acid-modified oligonucleotide (LNA-antimiR) effectively antagonizes the liver-expressed miR-122 in non-human primates. Acute administration by intravenous injections of 3 or 10 mg kg(-1) LNA-antimiR to African green monkeys resulted in uptake of the LNA-antimiR in the cytoplasm of primate hepatocytes and formation of stable heteroduplexes between the LNA-antimiR and miR-122. This was accompanied by depletion of mature miR-122 and dose-dependent lowering of plasma cholesterol. Efficient silencing of miR-122 was achieved in primates by three doses of 10 mg kg(-1) LNA-antimiR, leading to a long-lasting and reversible decrease in total plasma cholesterol without any evidence for LNA-associated toxicities or histopathological changes in the study animals. Our findings demonstrate the utility of systemically administered LNA-antimiRs in exploring miRNA function in rodents and primates, and support the potential of these compounds as a new class of therapeutics for disease-associated miRNAs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elmen, Joacim -- Lindow, Morten -- Schutz, Sylvia -- Lawrence, Matthew -- Petri, Andreas -- Obad, Susanna -- Lindholm, Marie -- Hedtjarn, Maj -- Hansen, Henrik Frydenlund -- Berger, Urs -- Gullans, Steven -- Kearney, Phil -- Sarnow, Peter -- Straarup, Ellen Marie -- Kauppinen, Sakari -- England -- Nature. 2008 Apr 17;452(7189):896-9. doi: 10.1038/nature06783. Epub 2008 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Santaris Pharma, Boge Alle 3, DK-2970 Horsholm, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18368051" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cercopithecus aethiops/*genetics ; Female ; *Gene Silencing ; Mice ; Mice, Inbred C57BL ; MicroRNAs/*genetics ; Oligonucleotides/administration & dosage/adverse effects/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...