ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Male  (4)
  • American Association for the Advancement of Science (AAAS)  (4)
  • Cell Press
  • MDPI
  • Wiley
  • 2005-2009  (4)
  • 1
    Publication Date: 2008-03-29
    Description: Schizophrenia is a devastating neurodevelopmental disorder whose genetic influences remain elusive. We hypothesize that individually rare structural variants contribute to the illness. Microdeletions and microduplications 〉100 kilobases were identified by microarray comparative genomic hybridization of genomic DNA from 150 individuals with schizophrenia and 268 ancestry-matched controls. All variants were validated by high-resolution platforms. Novel deletions and duplications of genes were present in 5% of controls versus 15% of cases and 20% of young-onset cases, both highly significant differences. The association was independently replicated in patients with childhood-onset schizophrenia as compared with their parents. Mutations in cases disrupted genes disproportionately from signaling networks controlling neurodevelopment, including neuregulin and glutamate pathways. These results suggest that multiple, individually rare mutations altering genes in neurodevelopmental pathways contribute to schizophrenia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walsh, Tom -- McClellan, Jon M -- McCarthy, Shane E -- Addington, Anjene M -- Pierce, Sarah B -- Cooper, Greg M -- Nord, Alex S -- Kusenda, Mary -- Malhotra, Dheeraj -- Bhandari, Abhishek -- Stray, Sunday M -- Rippey, Caitlin F -- Roccanova, Patricia -- Makarov, Vlad -- Lakshmi, B -- Findling, Robert L -- Sikich, Linmarie -- Stromberg, Thomas -- Merriman, Barry -- Gogtay, Nitin -- Butler, Philip -- Eckstrand, Kristen -- Noory, Laila -- Gochman, Peter -- Long, Robert -- Chen, Zugen -- Davis, Sean -- Baker, Carl -- Eichler, Evan E -- Meltzer, Paul S -- Nelson, Stanley F -- Singleton, Andrew B -- Lee, Ming K -- Rapoport, Judith L -- King, Mary-Claire -- Sebat, Jonathan -- HD043569/HD/NICHD NIH HHS/ -- M01 RR000046/RR/NCRR NIH HHS/ -- MH061355/MH/NIMH NIH HHS/ -- MH061464/MH/NIMH NIH HHS/ -- MH061528/MH/NIMH NIH HHS/ -- NS052108/NS/NINDS NIH HHS/ -- R01 HD043569/HD/NICHD NIH HHS/ -- RR000046/RR/NCRR NIH HHS/ -- RR025014/RR/NCRR NIH HHS/ -- U01 MH061355/MH/NIMH NIH HHS/ -- U01 MH061464/MH/NIMH NIH HHS/ -- U01 MH061528/MH/NIMH NIH HHS/ -- U24 NS052108/NS/NINDS NIH HHS/ -- UL1 RR025014/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 25;320(5875):539-43. doi: 10.1126/science.1155174. Epub 2008 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18369103" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Age of Onset ; Amino Acid Sequence ; Brain/cytology/*growth & development/metabolism ; Case-Control Studies ; Child ; Excitatory Amino Acid Transporter 1/chemistry/genetics/physiology ; Female ; *Gene Deletion ; *Gene Duplication ; Genetic Predisposition to Disease ; Genome, Human ; Humans ; Male ; Molecular Sequence Data ; *Mutation ; Neurons/cytology/physiology ; Oligonucleotide Array Sequence Analysis ; Polymorphism, Single Nucleotide ; Receptor, Epidermal Growth Factor/chemistry/genetics/physiology ; Receptor, ErbB-4 ; Schizophrenia/*genetics/physiopathology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-02-12
    Description: Most protein phosphatases have little intrinsic substrate specificity, making selective pharmacological inhibition of specific dephosphorylation reactions a challenging problem. In a screen for small molecules that protect cells from endoplasmic reticulum (ER) stress, we identified salubrinal, a selective inhibitor of cellular complexes that dephosphorylate eukaryotic translation initiation factor 2 subunit alpha (eIF2alpha). Salubrinal also blocks eIF2alpha dephosphorylation mediated by a herpes simplex virus protein and inhibits viral replication. These results suggest that selective chemical inhibitors of eIF2alpha dephosphorylation may be useful in diseases involving ER stress or viral infection. More broadly, salubrinal demonstrates the feasibility of selective pharmacological targeting of cellular dephosphorylation events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boyce, Michael -- Bryant, Kevin F -- Jousse, Celine -- Long, Kai -- Harding, Heather P -- Scheuner, Donalyn -- Kaufman, Randal J -- Ma, Dawei -- Coen, Donald M -- Ron, David -- Yuan, Junying -- AI19838/AI/NIAID NIH HHS/ -- AI26077/AI/NIAID NIH HHS/ -- DDK42394/DK/NIDDK NIH HHS/ -- DK47119/DK/NIDDK NIH HHS/ -- ES08681/ES/NIEHS NIH HHS/ -- GM64703/GM/NIGMS NIH HHS/ -- NS35138/NS/NINDS NIH HHS/ -- R37-AG012859/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2005 Feb 11;307(5711):935-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15705855" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Differentiation ; Apoptosis/*drug effects ; Cell Cycle Proteins ; Cell Line ; Cinnamates/*pharmacology/toxicity ; *Cytoprotection ; Dose-Response Relationship, Drug ; Endoplasmic Reticulum/*metabolism ; Enzyme Inhibitors/pharmacology ; Eukaryotic Initiation Factor-2/*metabolism ; Genes, Reporter ; Herpesvirus 1, Human/drug effects/physiology ; Keratitis, Herpetic/drug therapy/virology ; Male ; Mice ; Oxazoles/pharmacology/toxicity ; PC12 Cells ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Protein Folding ; Protein Kinases/metabolism ; Protein Phosphatase 1 ; Proteins/metabolism ; Rats ; Thiourea/*analogs & derivatives/*pharmacology/toxicity ; Tunicamycin/pharmacology ; Viral Proteins/metabolism ; Virus Replication/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-03-26
    Description: Sites of transcription of polyadenylated and nonpolyadenylated RNAs for 10 human chromosomes were mapped at 5-base pair resolution in eight cell lines. Unannotated, nonpolyadenylated transcripts comprise the major proportion of the transcriptional output of the human genome. Of all transcribed sequences, 19.4, 43.7, and 36.9% were observed to be polyadenylated, nonpolyadenylated, and bimorphic, respectively. Half of all transcribed sequences are found only in the nucleus and for the most part are unannotated. Overall, the transcribed portions of the human genome are predominantly composed of interlaced networks of both poly A+ and poly A- annotated transcripts and unannotated transcripts of unknown function. This organization has important implications for interpreting genotype-phenotype associations, regulation of gene expression, and the definition of a gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, Jill -- Kapranov, Philipp -- Drenkow, Jorg -- Dike, Sujit -- Brubaker, Shane -- Patel, Sandeep -- Long, Jeffrey -- Stern, David -- Tammana, Hari -- Helt, Gregg -- Sementchenko, Victor -- Piccolboni, Antonio -- Bekiranov, Stefan -- Bailey, Dione K -- Ganesh, Madhavan -- Ghosh, Srinka -- Bell, Ian -- Gerhard, Daniela S -- Gingeras, Thomas R -- New York, N.Y. -- Science. 2005 May 20;308(5725):1149-54. Epub 2005 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Affymetrix Inc., Santa Clara, CA 95051, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15790807" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Chromosomes, Human/*genetics ; Chromosomes, Human, Pair 13/genetics ; Chromosomes, Human, Pair 14/genetics ; Chromosomes, Human, Pair 19/genetics ; Chromosomes, Human, Pair 20/genetics ; Chromosomes, Human, Pair 21/genetics ; Chromosomes, Human, Pair 22/genetics ; Chromosomes, Human, Pair 6/genetics ; Chromosomes, Human, Pair 7/genetics ; Chromosomes, Human, X/genetics ; Chromosomes, Human, Y/genetics ; Computational Biology ; Cytosol/metabolism ; DNA, Complementary ; DNA, Intergenic ; Exons ; Female ; *Genome, Human ; Humans ; Introns ; Male ; Molecular Sequence Data ; Nucleic Acid Amplification Techniques ; Oligonucleotide Array Sequence Analysis ; Physical Chromosome Mapping ; RNA Splicing ; RNA, Messenger/*analysis ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-06-07
    Description: The role that natural selection plays in governing the locations and early evolution of copy-number mutations remains largely unexplored. We used high-density full-genome tiling arrays to create a fine-scale genomic map of copy-number polymorphisms (CNPs) in Drosophila melanogaster. We inferred a total of 2658 independent CNPs, 56% of which overlap genes. These include CNPs that are likely to be under positive selection, most notably high-frequency duplications encompassing toxin-response genes. The locations and frequencies of CNPs are strongly shaped by purifying selection, with deletions under stronger purifying selection than duplications. Among duplications, those overlapping exons or introns, as well as those falling on the X chromosome, seem to be subject to stronger purifying selection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Emerson, J J -- Cardoso-Moreira, Margarida -- Borevitz, Justin O -- Long, Manyuan -- New York, N.Y. -- Science. 2008 Jun 20;320(5883):1629-31. doi: 10.1126/science.1158078. Epub 2008 Jun 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA. jje@uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18535209" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA/genetics ; DNA, Intergenic ; Drosophila melanogaster/*genetics ; Exons ; Female ; *Gene Dosage ; Gene Duplication ; Gene Frequency ; Genes, Insect ; *Genome, Insect ; Introns ; Male ; Mutation ; Oligonucleotide Array Sequence Analysis ; *Polymorphism, Genetic ; *Selection, Genetic ; Sequence Deletion ; X Chromosome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...