ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice, Inbred C57BL  (4)
  • Nature Publishing Group (NPG)  (4)
  • American Geophysical Union (AGU)
  • Springer
  • 2005-2009  (4)
  • 1935-1939
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2008-08-23
    Description: Adipose tissue is central to the regulation of energy balance. Two functionally different types of fat are present in mammals: white adipose tissue, the primary site of triglyceride storage, and brown adipose tissue, which is specialized in energy expenditure and can counteract obesity. Factors that specify the developmental fate and function of white and brown adipose tissue remain poorly understood. Here we demonstrate that whereas some members of the family of bone morphogenetic proteins (BMPs) support white adipocyte differentiation, BMP7 singularly promotes differentiation of brown preadipocytes even in the absence of the normally required hormonal induction cocktail. BMP7 activates a full program of brown adipogenesis including induction of early regulators of brown fat fate PRDM16 (PR-domain-containing 16; ref. 4) and PGC-1alpha (peroxisome proliferator-activated receptor-gamma (PPARgamma) coactivator-1alpha; ref. 5), increased expression of the brown-fat-defining marker uncoupling protein 1 (UCP1) and adipogenic transcription factors PPARgamma and CCAAT/enhancer-binding proteins (C/EBPs), and induction of mitochondrial biogenesis via p38 mitogen-activated protein (MAP) kinase-(also known as Mapk14) and PGC-1-dependent pathways. Moreover, BMP7 triggers commitment of mesenchymal progenitor cells to a brown adipocyte lineage, and implantation of these cells into nude mice results in development of adipose tissue containing mostly brown adipocytes. Bmp7 knockout embryos show a marked paucity of brown fat and an almost complete absence of UCP1. Adenoviral-mediated expression of BMP7 in mice results in a significant increase in brown, but not white, fat mass and leads to an increase in energy expenditure and a reduction in weight gain. These data reveal an important role of BMP7 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro, and provide a potential new therapeutic approach for the treatment of obesity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745972/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745972/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tseng, Yu-Hua -- Kokkotou, Efi -- Schulz, Tim J -- Huang, Tian Lian -- Winnay, Jonathon N -- Taniguchi, Cullen M -- Tran, T Thien -- Suzuki, Ryo -- Espinoza, Daniel O -- Yamamoto, Yuji -- Ahrens, Molly J -- Dudley, Andrew T -- Norris, Andrew W -- Kulkarni, Rohit N -- Kahn, C Ronald -- K08 DK064906/DK/NIDDK NIH HHS/ -- K08 DK64906/DK/NIDDK NIH HHS/ -- P30 DK040561/DK/NIDDK NIH HHS/ -- P30 DK040561-13/DK/NIDDK NIH HHS/ -- P30 DK46200/DK/NIDDK NIH HHS/ -- R01 DK 060837/DK/NIDDK NIH HHS/ -- R01 DK077097/DK/NIDDK NIH HHS/ -- R01 DK077097-01A1/DK/NIDDK NIH HHS/ -- R01 DK077097-02/DK/NIDDK NIH HHS/ -- R01 DK67536/DK/NIDDK NIH HHS/ -- R21 DK070722/DK/NIDDK NIH HHS/ -- R21 DK070722-01/DK/NIDDK NIH HHS/ -- R21 DK070722-02/DK/NIDDK NIH HHS/ -- England -- Nature. 2008 Aug 21;454(7207):1000-4. doi: 10.1038/nature07221.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section on Obesity and Hormone Action, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA. yu-hua.tseng@joslin.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18719589" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; *Adipogenesis ; Adipose Tissue, Brown/*growth & development/*metabolism ; Adipose Tissue, White/growth & development ; Animals ; Bone Morphogenetic Protein 7 ; Bone Morphogenetic Proteins/*metabolism ; Cell Line ; *Energy Metabolism/genetics ; Male ; Mesenchymal Stromal Cells/cytology/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Nude ; Mitochondria/physiology ; Thermogenesis ; Transforming Growth Factor beta/*metabolism ; p38 Mitogen-Activated Protein Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-05-09
    Description: Chromatin modifications, especially histone-tail acetylation, have been implicated in memory formation. Increased histone-tail acetylation induced by inhibitors of histone deacetylases (HDACis) facilitates learning and memory in wild-type mice as well as in mouse models of neurodegeneration. Harnessing the therapeutic potential of HDACis requires knowledge of the specific HDAC family member(s) linked to cognitive enhancement. Here we show that neuron-specific overexpression of HDAC2, but not that of HDAC1, decreased dendritic spine density, synapse number, synaptic plasticity and memory formation. Conversely, Hdac2 deficiency resulted in increased synapse number and memory facilitation, similar to chronic treatment with HDACis in mice. Notably, reduced synapse number and learning impairment of HDAC2-overexpressing mice were ameliorated by chronic treatment with HDACis. Correspondingly, treatment with HDACis failed to further facilitate memory formation in Hdac2-deficient mice. Furthermore, analysis of promoter occupancy revealed an association of HDAC2 with the promoters of genes implicated in synaptic plasticity and memory formation. Taken together, our results suggest that HDAC2 functions in modulating synaptic plasticity and long-lasting changes of neural circuits, which in turn negatively regulates learning and memory. These observations encourage the development and testing of HDAC2-selective inhibitors for human diseases associated with memory impairment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498958/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498958/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guan, Ji-Song -- Haggarty, Stephen J -- Giacometti, Emanuela -- Dannenberg, Jan-Hermen -- Joseph, Nadine -- Gao, Jun -- Nieland, Thomas J F -- Zhou, Ying -- Wang, Xinyu -- Mazitschek, Ralph -- Bradner, James E -- DePinho, Ronald A -- Jaenisch, Rudolf -- Tsai, Li-Huei -- R01 DA028301/DA/NIDA NIH HHS/ -- R01 DA028301-02/DA/NIDA NIH HHS/ -- R01 NS051874/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 May 7;459(7243):55-60. doi: 10.1038/nature07925.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19424149" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Butyrates/pharmacology ; Dendritic Spines/physiology ; Electrical Synapses/*physiology ; Female ; Gene Expression Regulation ; Hippocampus/metabolism ; Histone Deacetylase 1 ; Histone Deacetylase 2 ; Histone Deacetylase Inhibitors ; Histone Deacetylases/deficiency/genetics/*metabolism ; Hydroxamic Acids/pharmacology ; Learning/drug effects ; Male ; Memory/drug effects/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurons/metabolism ; Promoter Regions, Genetic/genetics ; Repressor Proteins/antagonists & inhibitors/genetics/*metabolism ; Sodium/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-05-06
    Description: Erythroid cells undergo enucleation and the removal of organelles during terminal differentiation. Although autophagy has been suggested to mediate the elimination of organelles for erythroid maturation, the molecular mechanisms underlying this process remain undefined. Here we report a role for a Bcl-2 family member, Nix (also called Bnip3L), in the regulation of erythroid maturation through mitochondrial autophagy. Nix(-/-) mice developed anaemia with reduced mature erythrocytes and compensatory expansion of erythroid precursors. Erythrocytes in the peripheral blood of Nix(-/-) mice exhibited mitochondrial retention and reduced lifespan in vivo. Although the clearance of ribosomes proceeded normally in the absence of Nix, the entry of mitochondria into autophagosomes for clearance was defective. Deficiency in Nix inhibited the loss of mitochondrial membrane potential (DeltaPsi(m)), and treatment with uncoupling chemicals or a BH3 mimetic induced the loss of DeltaPsi(m) and restored the sequestration of mitochondria into autophagosomes in Nix(-/-) erythroid cells. These results suggest that Nix-dependent loss of DeltaPsi(m) is important for targeting the mitochondria into autophagosomes for clearance during erythroid maturation, and interference with this function impairs erythroid maturation and results in anaemia. Our study may also provide insights into molecular mechanisms underlying mitochondrial quality control involving mitochondrial autophagy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570948/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570948/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sandoval, Hector -- Thiagarajan, Perumal -- Dasgupta, Swapan K -- Schumacher, Armin -- Prchal, Josef T -- Chen, Min -- Wang, Jin -- F31 AI058932/AI/NIAID NIH HHS/ -- R01 AI056210/AI/NIAID NIH HHS/ -- R01 AI056210-05/AI/NIAID NIH HHS/ -- R01 AI074949/AI/NIAID NIH HHS/ -- R01 AI074949-01/AI/NIAID NIH HHS/ -- R01 GM087710/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Jul 10;454(7201):232-5. doi: 10.1038/nature07006. Epub 2008 May 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18454133" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/drug effects ; *Autophagy/drug effects ; Biphenyl Compounds/pharmacology ; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/pharmacology ; Cell Survival/drug effects ; Embryonic Stem Cells/cytology/drug effects ; Erythroid Cells/*cytology/drug effects/*metabolism ; *Erythropoiesis/drug effects ; Membrane Proteins/deficiency/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Mitochondria/drug effects/metabolism/pathology ; Mitochondrial Proteins/deficiency/genetics/*metabolism ; Nitrophenols/pharmacology ; Piperazines/pharmacology ; Reticulocytes/cytology/drug effects/metabolism ; Sulfonamides/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-02-22
    Description: Cytokines affect a variety of cellular functions, including regulation of cell numbers by suppression of programmed cell death. Suppression of apoptosis requires receptor signalling through the activation of Janus kinases and the subsequent regulation of members of the B-cell lymphoma 2 (Bcl-2) family. Here we demonstrate that a Bcl-2-family-related protein, Hax1, is required to suppress apoptosis in lymphocytes and neurons. Suppression requires the interaction of Hax1 with the mitochondrial proteases Parl (presenilin-associated, rhomboid-like) and HtrA2 (high-temperature-regulated A2, also known as Omi). These interactions allow Hax1 to present HtrA2 to Parl, and thereby facilitates the processing of HtrA2 to the active protease localized in the mitochondrial intermembrane space. In mouse lymphocytes, the presence of processed HtrA2 prevents the accumulation of mitochondrial-outer-membrane-associated activated Bax, an event that initiates apoptosis. Together, the results identify a previously unknown sequence of interactions involving a Bcl-2-family-related protein and mitochondrial proteases in the ability to resist the induction of apoptosis when cytokines are limiting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chao, Jyh-Rong -- Parganas, Evan -- Boyd, Kelli -- Hong, Cheol Yi -- Opferman, Joseph T -- Ihle, James N -- England -- Nature. 2008 Mar 6;452(7183):98-102. doi: 10.1038/nature06604. Epub 2008 Feb 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18288109" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Survival ; Genes, Lethal ; Lymphocytes/cytology/metabolism ; Metalloproteases/deficiency/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondrial Proteins/chemistry/deficiency/*metabolism ; Neurons/cytology/metabolism ; Protein Binding ; *Protein Processing, Post-Translational ; Proteins/genetics/*metabolism ; Serine Endopeptidases/chemistry/*metabolism ; bcl-2-Associated X Protein/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...