ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Protein Binding
  • Nature Publishing Group (NPG)  (3)
  • American Geophysical Union (AGU)
  • Springer
  • 2005-2009  (3)
  • 1935-1939
  • 1
    Publication Date: 2009-12-25
    Description: Evenly spaced nucleosomes directly correlate with condensed chromatin and gene silencing. The ATP-dependent chromatin assembly factor (ACF) forms such structures in vitro and is required for silencing in vivo. ACF generates and maintains nucleosome spacing by constantly moving a nucleosome towards the longer flanking DNA faster than the shorter flanking DNA. How the enzyme rapidly moves back and forth between both sides of a nucleosome to accomplish bidirectional movement is unknown. Here we show that nucleosome movement depends cooperatively on two ACF molecules, indicating that ACF functions as a dimer of ATPases. Further, the nucleotide state determines whether the dimer closely engages one or both sides of the nucleosome. Three-dimensional reconstruction by single-particle electron microscopy of the ATPase-nucleosome complex in an activated ATP state reveals a dimer architecture in which the two ATPases face each other. Our results indicate a model in which the two ATPases work in a coordinated manner, taking turns to engage either side of a nucleosome, thereby allowing processive bidirectional movement. This novel dimeric motor mechanism differs from that of dimeric motors such as kinesin and dimeric helicases that processively translocate unidirectionally and reflects the unique challenges faced by motors that move nucleosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869534/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869534/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Racki, Lisa R -- Yang, Janet G -- Naber, Nariman -- Partensky, Peretz D -- Acevedo, Ashley -- Purcell, Thomas J -- Cooke, Roger -- Cheng, Yifan -- Narlikar, Geeta J -- R01 GM073767/GM/NIGMS NIH HHS/ -- R01 GM073767-01/GM/NIGMS NIH HHS/ -- R01 GM073767-02/GM/NIGMS NIH HHS/ -- R01 GM073767-03/GM/NIGMS NIH HHS/ -- R01 GM073767-03S1/GM/NIGMS NIH HHS/ -- R01 GM073767-04/GM/NIGMS NIH HHS/ -- R01 GM073767-05/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Dec 24;462(7276):1016-21. doi: 10.1038/nature08621.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20033039" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Chromatin Assembly and Disassembly/*physiology ; Dimerization ; Gene Silencing/physiology ; Histones/metabolism ; Humans ; Microscopy, Electron, Transmission ; *Models, Molecular ; Multiprotein Complexes/*metabolism ; Nucleosomes/chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Transcription Factors/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-02-22
    Description: Cytokines affect a variety of cellular functions, including regulation of cell numbers by suppression of programmed cell death. Suppression of apoptosis requires receptor signalling through the activation of Janus kinases and the subsequent regulation of members of the B-cell lymphoma 2 (Bcl-2) family. Here we demonstrate that a Bcl-2-family-related protein, Hax1, is required to suppress apoptosis in lymphocytes and neurons. Suppression requires the interaction of Hax1 with the mitochondrial proteases Parl (presenilin-associated, rhomboid-like) and HtrA2 (high-temperature-regulated A2, also known as Omi). These interactions allow Hax1 to present HtrA2 to Parl, and thereby facilitates the processing of HtrA2 to the active protease localized in the mitochondrial intermembrane space. In mouse lymphocytes, the presence of processed HtrA2 prevents the accumulation of mitochondrial-outer-membrane-associated activated Bax, an event that initiates apoptosis. Together, the results identify a previously unknown sequence of interactions involving a Bcl-2-family-related protein and mitochondrial proteases in the ability to resist the induction of apoptosis when cytokines are limiting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chao, Jyh-Rong -- Parganas, Evan -- Boyd, Kelli -- Hong, Cheol Yi -- Opferman, Joseph T -- Ihle, James N -- England -- Nature. 2008 Mar 6;452(7183):98-102. doi: 10.1038/nature06604. Epub 2008 Feb 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18288109" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Survival ; Genes, Lethal ; Lymphocytes/cytology/metabolism ; Metalloproteases/deficiency/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondrial Proteins/chemistry/deficiency/*metabolism ; Neurons/cytology/metabolism ; Protein Binding ; *Protein Processing, Post-Translational ; Proteins/genetics/*metabolism ; Serine Endopeptidases/chemistry/*metabolism ; bcl-2-Associated X Protein/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-06-19
    Description: Pluripotency of embryonic stem (ES) cells is controlled by defined transcription factors. During differentiation, mouse ES cells undergo global epigenetic reprogramming, as exemplified by X-chromosome inactivation (XCI) in which one female X chromosome is silenced to achieve gene dosage parity between the sexes. Somatic XCI is regulated by homologous X-chromosome pairing and counting, and by the random choice of future active and inactive X chromosomes. XCI and cell differentiation are tightly coupled, as blocking one process compromises the other and dedifferentiation of somatic cells to induced pluripotent stem cells is accompanied by X chromosome reactivation. Recent evidence suggests coupling of Xist expression to pluripotency factors occurs, but how the two are interconnected remains unknown. Here we show that Oct4 (also known as Pou5f1) lies at the top of the XCI hierarchy, and regulates XCI by triggering X-chromosome pairing and counting. Oct4 directly binds Tsix and Xite, two regulatory noncoding RNA genes of the X-inactivation centre, and also complexes with XCI trans-factors, Ctcf and Yy1 (ref. 17), through protein-protein interactions. Depletion of Oct4 blocks homologous X-chromosome pairing and results in the inactivation of both X chromosomes in female cells. Thus, we have identified the first trans-factor that regulates counting, and ascribed new functions to Oct4 during X-chromosome reprogramming.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057664/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057664/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Donohoe, Mary E -- Silva, Susana S -- Pinter, Stefan F -- Xu, Na -- Lee, Jeannie T -- GM58839/GM/NIGMS NIH HHS/ -- R01 GM058839/GM/NIGMS NIH HHS/ -- R01 GM058839-10/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jul 2;460(7251):128-32. doi: 10.1038/nature08098. Epub 2009 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536159" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; *Chromosome Pairing ; Female ; Humans ; Male ; Mice ; Octamer Transcription Factor-3/deficiency/genetics/*metabolism ; Protein Binding ; RNA, Long Noncoding ; RNA, Untranslated/genetics ; Repressor Proteins/*metabolism ; SOXB1 Transcription Factors ; Transcriptional Activation ; X Chromosome/*genetics/*metabolism ; X Chromosome Inactivation/*genetics ; YY1 Transcription Factor/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...