ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (98)
  • Mice, Inbred C57BL  (98)
  • 2005-2009  (98)
  • 1940-1944
  • Natural Sciences in General  (98)
  • Political Science
Collection
  • Articles  (98)
Years
Year
Topic
  • 1
    Publication Date: 2009-02-27
    Description: Lung disease is the major cause of morbidity and mortality in cystic fibrosis, an autosomal recessive disease caused by mutations in CFTR. In cystic fibrosis, chronic infection and dysregulated neutrophilic inflammation lead to progressive airway destruction. The severity of cystic fibrosis lung disease has considerable heritability, independent of CFTR genotype. To identify genetic modifiers, here we performed a genome-wide single nucleotide polymorphism scan in one cohort of cystic fibrosis patients, replicating top candidates in an independent cohort. This approach identified IFRD1 as a modifier of cystic fibrosis lung disease severity. IFRD1 is a histone-deacetylase-dependent transcriptional co-regulator expressed during terminal neutrophil differentiation. Neutrophils, but not macrophages, from Ifrd1-deficient mice showed blunted effector function, associated with decreased NF-kappaB p65 transactivation. In vivo, IFRD1 deficiency caused delayed bacterial clearance from the airway, but also less inflammation and disease-a phenotype primarily dependent on haematopoietic cell expression, or lack of expression, of IFRD1. In humans, IFRD1 polymorphisms were significantly associated with variation in neutrophil effector function. These data indicate that IFRD1 modulates the pathogenesis of cystic fibrosis lung disease through the regulation of neutrophil effector function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841516/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841516/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, YuanYuan -- Harley, Isaac T W -- Henderson, Lindsay B -- Aronow, Bruce J -- Vietor, Ilja -- Huber, Lukas A -- Harley, John B -- Kilpatrick, Jeffrey R -- Langefeld, Carl D -- Williams, Adrienne H -- Jegga, Anil G -- Chen, Jing -- Wills-Karp, Marsha -- Arshad, S Hasan -- Ewart, Susan L -- Thio, Chloe L -- Flick, Leah M -- Filippi, Marie-Dominique -- Grimes, H Leighton -- Drumm, Mitchell L -- Cutting, Garry R -- Knowles, Michael R -- Karp, Christopher L -- R01 AI024717/AI/NIAID NIH HHS/ -- R01 HL068890/HL/NHLBI NIH HHS/ -- R01 HL068890-01/HL/NHLBI NIH HHS/ -- R01 HL068927/HL/NHLBI NIH HHS/ -- R01 HL068927-01/HL/NHLBI NIH HHS/ -- R01 HL079312/HL/NHLBI NIH HHS/ -- R01 HL079312-01A1/HL/NHLBI NIH HHS/ -- R37 AI024717/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Apr 23;458(7241):1039-42. doi: 10.1038/nature07811. Epub 2009 Feb 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19242412" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cohort Studies ; Cystic Fibrosis/*genetics/*pathology ; Disease Models, Animal ; Genotype ; Humans ; Immediate-Early Proteins/deficiency/*genetics ; Inflammation/genetics/pathology ; Mice ; Mice, Inbred C57BL ; Neutrophils/immunology/metabolism ; Polymorphism, Single Nucleotide/genetics ; Pseudomonas aeruginosa/immunology/pathogenicity ; Transcription Factor RelA/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-10-02
    Description: Fas ligand (FasL), an apoptosis-inducing member of the TNF cytokine family, and its receptor Fas are critical for the shutdown of chronic immune responses and prevention of autoimmunity. Accordingly, mutations in their genes cause severe lymphadenopathy and autoimmune disease in mice and humans. FasL function is regulated by deposition in the plasma membrane and metalloprotease-mediated shedding. Here we generated gene-targeted mice that selectively lack either secreted FasL (sFasL) or membrane-bound FasL (mFasL) to resolve which of these forms is required for cell killing and to explore their hypothesized non-apoptotic activities. Mice lacking sFasL (FasL(Deltas/Deltas)) appeared normal and their T cells readily killed target cells, whereas T cells lacking mFasL (FasL(Deltam/Deltam)) could not kill cells through Fas activation. FasL(Deltam/Deltam) mice developed lymphadenopathy and hyper-gammaglobulinaemia, similar to FasL(gld/gld) mice, which express a mutant form of FasL that cannot bind Fas, but surprisingly, FasL(Deltam/Deltam) mice (on a C57BL/6 background) succumbed to systemic lupus erythematosus (SLE)-like autoimmune kidney destruction and histiocytic sarcoma, diseases that occur only rarely and much later in FasL(gld/gld) mice. These results demonstrate that mFasL is essential for cytotoxic activity and constitutes the guardian against lymphadenopathy, autoimmunity and cancer, whereas excess sFasL appears to promote autoimmunity and tumorigenesis through non-apoptotic activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785124/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785124/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O' Reilly, Lorraine A -- Tai, Lin -- Lee, Lily -- Kruse, Elizabeth A -- Grabow, Stephanie -- Fairlie, W Douglas -- Haynes, Nicole M -- Tarlinton, David M -- Zhang, Jian-Guo -- Belz, Gabrielle T -- Smyth, Mark J -- Bouillet, Philippe -- Robb, Lorraine -- Strasser, Andreas -- CA043540-18/CA/NCI NIH HHS/ -- CA80188-6/CA/NCI NIH HHS/ -- R01 CA043540/CA/NCI NIH HHS/ -- R01 CA043540-18/CA/NCI NIH HHS/ -- R01 CA080188-06/CA/NCI NIH HHS/ -- England -- Nature. 2009 Oct 1;461(7264):659-63. doi: 10.1038/nature08402.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19794494" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Antinuclear/immunology ; Antigens, CD95/*metabolism ; *Apoptosis ; Cell Membrane/*metabolism ; Cytidine Deaminase/metabolism ; Cytotoxicity, Immunologic ; Fas Ligand Protein/deficiency/genetics/*metabolism/secretion ; Glomerulonephritis/metabolism ; Histiocytic Sarcoma/metabolism ; Hypergammaglobulinemia/metabolism ; Lupus Erythematosus, Systemic/metabolism ; Lymphatic Diseases/metabolism ; Mice ; Mice, Inbred C57BL ; Mutation ; Splenomegaly/metabolism ; T-Lymphocytes/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-02-26
    Description: We identified axonal defects in mouse models of Alzheimer's disease that preceded known disease-related pathology by more than a year; we observed similar axonal defects in the early stages of Alzheimer's disease in humans. Axonal defects consisted of swellings that accumulated abnormal amounts of microtubule-associated and molecular motor proteins, organelles, and vesicles. Impairing axonal transport by reducing the dosage of a kinesin molecular motor protein enhanced the frequency of axonal defects and increased amyloid-beta peptide levels and amyloid deposition. Reductions in microtubule-dependent transport may stimulate proteolytic processing of beta-amyloid precursor protein, resulting in the development of senile plaques and Alzheimer's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokin, Gorazd B -- Lillo, Concepcion -- Falzone, Tomas L -- Brusch, Richard G -- Rockenstein, Edward -- Mount, Stephanie L -- Raman, Rema -- Davies, Peter -- Masliah, Eliezer -- Williams, David S -- Goldstein, Lawrence S B -- EY12598/EY/NEI NIH HHS/ -- EY13408/EY/NEI NIH HHS/ -- P50 AG05131/AG/NIA NIH HHS/ -- R01 EY007042/EY/NEI NIH HHS/ -- R01 EY007042-19/EY/NEI NIH HHS/ -- R01 EY013408/EY/NEI NIH HHS/ -- R01 EY013408-02/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2005 Feb 25;307(5713):1282-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego (UCSD), 9500 Gilman Drive, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731448" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; Alzheimer Disease/genetics/*metabolism/*pathology ; Amyloid beta-Peptides/metabolism ; Amyloid beta-Protein Precursor/metabolism ; Animals ; *Axonal Transport ; Axons/*pathology/physiology ; Basal Nucleus of Meynert/pathology ; Brain/*metabolism/*pathology ; Cells, Cultured ; Cytoplasmic Vesicles/ultrastructure ; Female ; Hippocampus ; Humans ; Kinesin/metabolism ; Male ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Microtubule-Associated Proteins/genetics/metabolism ; Neurons/metabolism ; Organelles/ultrastructure ; Plaque, Amyloid/pathology ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-11-25
    Description: The basic helix-loop-helix (bHLH)-Per-Arnt-Sim (PAS) domain transcription factor BMAL1 is an essential component of the mammalian circadian pacemaker. Bmal1-/- mice lose circadian rhythmicity but also display tendon calcification and decreased activity, body weight, and longevity. To investigate whether these diverse functions of BMAL1 are tissue-specific, we produced transgenic mice that constitutively express Bmal1 in brain or muscle and examined the effects of rescued gene expression in Bmal1-/- mice. Circadian rhythms of wheel-running activity were restored in brain-rescued Bmal1-/- mice in a conditional manner; however, activity levels and body weight were lower than those of wild-type mice. In contrast, muscle-rescued Bmal1-/- mice exhibited normal activity levels and body weight yet remained behaviorally arrhythmic. Thus, Bmal1 has distinct tissue-specific functions that regulate integrative physiology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756687/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756687/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McDearmon, Erin L -- Patel, Kush N -- Ko, Caroline H -- Walisser, Jacqueline A -- Schook, Andrew C -- Chong, Jason L -- Wilsbacher, Lisa D -- Song, Eun J -- Hong, Hee-Kyung -- Bradfield, Christopher A -- Takahashi, Joseph S -- P50 MH074924/MH/NIMH NIH HHS/ -- R01 ES005703/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1304-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124323" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/*physiology ; Body Weight ; Brain/*metabolism ; Calcinosis ; Cell Cycle Proteins/genetics ; Chromosomes, Artificial, Bacterial ; *Circadian Rhythm ; Gene Expression ; Longevity ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; *Motor Activity ; Muscle, Skeletal/*metabolism ; Nuclear Proteins/genetics ; Organ Specificity ; Period Circadian Proteins ; Suprachiasmatic Nucleus/metabolism ; Tendons/pathology ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-12-08
    Description: Abuse of the dissociative anesthetic ketamine can lead to a syndrome indistinguishable from schizophrenia. In animals, repetitive exposure to this N-methyl-d-aspartate-receptor antagonist induces the dysfunction of a subset of cortical fast-spiking inhibitory interneurons, with loss of expression of parvalbumin and the gamma-aminobutyric acid-producing enzyme GAD67. We show here that exposure of mice to ketamine induced a persistent increase in brain superoxide due to activation in neurons of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Decreasing superoxide production prevented the effects of ketamine on inhibitory interneurons in the prefrontal cortex. These results suggest that NADPH oxidase may represent a novel target for the treatment of ketamine-induced psychosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Behrens, M Margarita -- Ali, Sameh S -- Dao, Diep N -- Lucero, Jacinta -- Shekhtman, Grigoriy -- Quick, Kevin L -- Dugan, Laura L -- New York, N.Y. -- Science. 2007 Dec 7;318(5856):1645-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Division of Geriatric Medicine, University of California San Diego, La Jolla, CA 92093-0746, USA. mbehrens@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18063801" target="_blank"〉PubMed〈/a〉
    Keywords: Acetophenones/pharmacology ; Animals ; Brain/*drug effects/enzymology/metabolism ; Cells, Cultured ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Glutamate Decarboxylase/metabolism ; Interneurons/*drug effects/enzymology/*metabolism ; Ketamine/*pharmacology ; Male ; Membrane Glycoproteins/*metabolism ; Mice ; Mice, Inbred C57BL ; NADPH Oxidase/*metabolism ; Oxidation-Reduction ; Parvalbumins/metabolism ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors/metabolism ; Superoxides/*metabolism ; Synaptic Transmission/drug effects ; Synaptosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-08-15
    Description: Furin is one of seven proprotein convertase family members that promote proteolytic maturation of proproteins. It is induced in activated T cells and is reported to process a variety of substrates including the anti-inflammatory cytokine transforming growth factor (TGF)-beta1 (refs 2-4), but the non-redundant functions of furin versus other proprotein convertases in T cells are unclear. Here we show that conditional deletion of furin in T cells allowed for normal T-cell development but impaired the function of regulatory and effector T cells, which produced less TGF-beta1. Furin-deficient T regulatory (Treg) cells were less protective in a T-cell transfer colitis model and failed to induce Foxp3 in normal T cells. Additionally, furin-deficient effector cells were inherently over-active and were resistant to suppressive activity of wild-type Treg cells. Thus, our results indicate that furin is indispensable in maintaining peripheral tolerance, which is due, at least in part, to its non-redundant, essential function in regulating TGF-beta1 production. Targeting furin has emerged as a strategy in malignant and infectious disease. Our results suggest that inhibiting furin might activate immune responses, but may result in a breakdown in peripheral tolerance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758057/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758057/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pesu, Marko -- Watford, Wendy T -- Wei, Lai -- Xu, Lili -- Fuss, Ivan -- Strober, Warren -- Andersson, John -- Shevach, Ethan M -- Quezado, Martha -- Bouladoux, Nicolas -- Roebroek, Anton -- Belkaid, Yasmine -- Creemers, John -- O'Shea, John J -- Z99 EY999999/Intramural NIH HHS/ -- England -- Nature. 2008 Sep 11;455(7210):246-50. doi: 10.1038/nature07210.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Immunology and Inflammation Branch, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. pesum@mail.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18701887" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/immunology ; Antigens, CD4/immunology/metabolism ; Autoimmunity/immunology ; Colitis/immunology ; Furin/deficiency/genetics/*metabolism ; Gene Expression Profiling ; Immune Tolerance/*immunology ; Immunologic Memory/immunology ; Integrin alpha Chains/immunology ; Lymphocyte Activation/immunology ; Mice ; Mice, Inbred C57BL ; T-Lymphocytes/cytology/*enzymology/*immunology ; Thymus Gland/cytology/immunology ; Transforming Growth Factor beta1/biosynthesis/genetics/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-11-11
    Description: Angiogenesis does not only depend on endothelial cell invasion and proliferation: it also requires pericyte coverage of vascular sprouts for vessel stabilization. These processes are coordinated by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) through their cognate receptors on endothelial cells and vascular smooth muscle cells (VSMCs), respectively. PDGF induces neovascularization by priming VSMCs/pericytes to release pro-angiogenic mediators. Although VEGF directly stimulates endothelial cell proliferation and migration, its role in pericyte biology is less clear. Here we define a role for VEGF as an inhibitor of neovascularization on the basis of its capacity to disrupt VSMC function. Specifically, under conditions of PDGF-mediated angiogenesis, VEGF ablates pericyte coverage of nascent vascular sprouts, leading to vessel destabilization. At the molecular level, VEGF-mediated activation of VEGF-R2 suppresses PDGF-Rbeta signalling in VSMCs through the assembly of a previously undescribed receptor complex consisting of PDGF-Rbeta and VEGF-R2. Inhibition of VEGF-R2 not only prevents assembly of this receptor complex but also restores angiogenesis in tissues exposed to both VEGF and PDGF. Finally, genetic deletion of tumour cell VEGF disrupts PDGF-Rbeta/VEGF-R2 complex formation and increases tumour vessel maturation. These findings underscore the importance of VSMCs/pericytes in neovascularization and reveal a dichotomous role for VEGF and VEGF-R2 signalling as both a promoter of endothelial cell function and a negative regulator of VSMCs and vessel maturation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605188/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605188/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greenberg, Joshua I -- Shields, David J -- Barillas, Samuel G -- Acevedo, Lisette M -- Murphy, Eric -- Huang, Jianhua -- Scheppke, Lea -- Stockmann, Christian -- Johnson, Randall S -- Angle, Niren -- Cheresh, David A -- GM 68524/GM/NIGMS NIH HHS/ -- P01 CA078045/CA/NCI NIH HHS/ -- P01 CA078045-050004/CA/NCI NIH HHS/ -- P01 CA078045-100004/CA/NCI NIH HHS/ -- P01 CA078045-109001/CA/NCI NIH HHS/ -- R01 CA095262/CA/NCI NIH HHS/ -- R01 CA095262-06/CA/NCI NIH HHS/ -- R01 CA118165/CA/NCI NIH HHS/ -- R01 HL078912/HL/NHLBI NIH HHS/ -- R01 HL078912-04/HL/NHLBI NIH HHS/ -- R21 CA129660/CA/NCI NIH HHS/ -- R21 CA129660-02/CA/NCI NIH HHS/ -- R37 CA050286/CA/NCI NIH HHS/ -- R37 CA050286-19/CA/NCI NIH HHS/ -- R37 CA050286-20/CA/NCI NIH HHS/ -- R37-CA082515/CA/NCI NIH HHS/ -- R37-CA50286/CA/NCI NIH HHS/ -- England -- Nature. 2008 Dec 11;456(7223):809-13. doi: 10.1038/nature07424. Epub 2008 Nov 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, School of Medicine, Moore's UCSD Cancer Center, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18997771" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenesis Inhibitors/pharmacology ; Animals ; Blood Vessels/*metabolism ; Cell Line ; Cells, Cultured ; Fibrosarcoma/blood supply ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Nude ; Neovascularization, Physiologic/drug effects/*physiology ; Pericytes/drug effects/*metabolism ; Platelet-Derived Growth Factor/*metabolism/pharmacology ; Receptor, Platelet-Derived Growth Factor beta/metabolism ; Receptors, Vascular Endothelial Growth Factor/metabolism ; Signal Transduction ; Vascular Endothelial Growth Factor A/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-01-13
    Description: In an adaptive immune response, naive T cells proliferate during infection and generate long-lived memory cells that undergo secondary expansion after a repeat encounter with the same pathogen. Although natural killer (NK) cells have traditionally been classified as cells of the innate immune system, they share many similarities with cytotoxic T lymphocytes. We use a mouse model of cytomegalovirus infection to show that, like T cells, NK cells bearing the virus-specific Ly49H receptor proliferate 100-fold in the spleen and 1,000-fold in the liver after infection. After a contraction phase, Ly49H-positive NK cells reside in lymphoid and non-lymphoid organs for several months. These self-renewing 'memory' NK cells rapidly degranulate and produce cytokines on reactivation. Adoptive transfer of these NK cells into naive animals followed by viral challenge results in a robust secondary expansion and protective immunity. These findings reveal properties of NK cells that were previously attributed only to cells of the adaptive immune system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674434/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674434/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Joseph C -- Beilke, Joshua N -- Lanier, Lewis L -- AI068129/AI/NIAID NIH HHS/ -- R01 AI068129/AI/NIAID NIH HHS/ -- R01 AI068129-09/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Jan 29;457(7229):557-61. doi: 10.1038/nature07665. Epub 2009 Jan 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, California 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19136945" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/deficiency/genetics ; Adoptive Transfer ; Animals ; Cell Proliferation ; Immunologic Memory/*immunology ; Killer Cells, Natural/*cytology/*immunology ; Lymphoid Tissue/immunology ; Mice ; Mice, Congenic ; Mice, Inbred C57BL ; *Models, Immunological ; Muromegalovirus/immunology/physiology ; Phenotype ; T-Lymphocytes, Cytotoxic/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-06-19
    Description: T-cell acute lymphoblastic leukaemia (T-ALL) is a blood malignancy afflicting mainly children and adolescents. T-ALL patients present at diagnosis with increased white cell counts and hepatosplenomegaly, and are at an increased risk of central nervous system (CNS) relapse. For that reason, T-ALL patients usually receive cranial irradiation in addition to intensified intrathecal chemotherapy. The marked increase in survival is thought to be worth the considerable side-effects associated with this therapy. Such complications include secondary tumours, neurocognitive deficits, endocrine disorders and growth impairment. Little is known about the mechanism of leukaemic cell infiltration of the CNS, despite its clinical importance. Here we show, using T-ALL animal modelling and gene-expression profiling, that the chemokine receptor CCR7 (ref. 5) is the essential adhesion signal required for the targeting of leukaemic T-cells into the CNS. Ccr7 gene expression is controlled by the activity of the T-ALL oncogene Notch1 and is expressed in human tumours carrying Notch1-activating mutations. Silencing of either CCR7 or its chemokine ligand CCL19 (ref. 6) in an animal model of T-ALL specifically inhibits CNS infiltration. Furthermore, murine CNS-targeting by human T-ALL cells depends on their ability to express CCR7. These studies identify a single chemokine-receptor interaction as a CNS 'entry' signal, and open the way for future pharmacological targeting. Targeted inhibition of CNS involvement in T-ALL could potentially decrease the intensity of CNS-targeted therapy, thus reducing its associated short- and long-term complications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750496/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750496/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buonamici, Silvia -- Trimarchi, Thomas -- Ruocco, Maria Grazia -- Reavie, Linsey -- Cathelin, Severine -- Mar, Brenton G -- Klinakis, Apostolos -- Lukyanov, Yevgeniy -- Tseng, Jen-Chieh -- Sen, Filiz -- Gehrie, Eric -- Li, Mengling -- Newcomb, Elizabeth -- Zavadil, Jiri -- Meruelo, Daniel -- Lipp, Martin -- Ibrahim, Sherif -- Efstratiadis, Argiris -- Zagzag, David -- Bromberg, Jonathan S -- Dustin, Michael L -- Aifantis, Iannis -- 1 P01 CA97403/CA/NCI NIH HHS/ -- P30CA016087/CA/NCI NIH HHS/ -- R01 AI041428/AI/NIAID NIH HHS/ -- R01 AI062765/AI/NIAID NIH HHS/ -- R01 AI072039/AI/NIAID NIH HHS/ -- R01 CA105129/CA/NCI NIH HHS/ -- R01 CA149655/CA/NCI NIH HHS/ -- R01AI072039/AI/NIAID NIH HHS/ -- R01AI41428/AI/NIAID NIH HHS/ -- R01CA105129/CA/NCI NIH HHS/ -- R01CA133379/CA/NCI NIH HHS/ -- R21 CA141399/CA/NCI NIH HHS/ -- R56AI070310/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Jun 18;459(7249):1000-4. doi: 10.1038/nature08020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and New York University Cancer Institute, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536265" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Adhesion ; Cell Line, Tumor ; Central Nervous System/*metabolism/*pathology ; Chemokine CCL19/deficiency/metabolism ; Chemokine CCL21/metabolism ; Humans ; Leukemia, T-Cell/*metabolism/*pathology ; Mice ; Mice, Inbred C57BL ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism/pathology ; Receptor, Notch1/genetics/metabolism ; Receptors, CCR7/deficiency/*metabolism ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-02-06
    Description: The metabolism of oxygen, although central to life, produces reactive oxygen species (ROS) that have been implicated in processes as diverse as cancer, cardiovascular disease and ageing. It has recently been shown that central nervous system stem cells and haematopoietic stem cells and early progenitors contain lower levels of ROS than their more mature progeny, and that these differences are critical for maintaining stem cell function. We proposed that epithelial tissue stem cells and their cancer stem cell (CSC) counterparts may also share this property. Here we show that normal mammary epithelial stem cells contain lower concentrations of ROS than their more mature progeny cells. Notably, subsets of CSCs in some human and murine breast tumours contain lower ROS levels than corresponding non-tumorigenic cells (NTCs). Consistent with ROS being critical mediators of ionizing-radiation-induced cell killing, CSCs in these tumours develop less DNA damage and are preferentially spared after irradiation compared to NTCs. Lower ROS levels in CSCs are associated with increased expression of free radical scavenging systems. Pharmacological depletion of ROS scavengers in CSCs markedly decreases their clonogenicity and results in radiosensitization. These results indicate that, similar to normal tissue stem cells, subsets of CSCs in some tumours contain lower ROS levels and enhanced ROS defences compared to their non-tumorigenic progeny, which may contribute to tumour radioresistance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778612/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778612/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diehn, Maximilian -- Cho, Robert W -- Lobo, Neethan A -- Kalisky, Tomer -- Dorie, Mary Jo -- Kulp, Angela N -- Qian, Dalong -- Lam, Jessica S -- Ailles, Laurie E -- Wong, Manzhi -- Joshua, Benzion -- Kaplan, Michael J -- Wapnir, Irene -- Dirbas, Frederick M -- Somlo, George -- Garberoglio, Carlos -- Paz, Benjamin -- Shen, Jeannie -- Lau, Sean K -- Quake, Stephen R -- Brown, J Martin -- Weissman, Irving L -- Clarke, Michael F -- R01 CA100225/CA/NCI NIH HHS/ -- R01 CA100225-05/CA/NCI NIH HHS/ -- U54 CA126524/CA/NCI NIH HHS/ -- U54 CA126524-04/CA/NCI NIH HHS/ -- England -- Nature. 2009 Apr 9;458(7239):780-3. doi: 10.1038/nature07733.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194462" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/physiopathology ; Cells, Cultured ; DNA Damage/genetics/radiation effects ; Female ; Gene Expression ; Humans ; Mammary Glands, Human/cytology/metabolism ; Mice ; Mice, Inbred C57BL ; Neoplastic Stem Cells/*metabolism/*radiation effects ; Radiation Tolerance/*physiology ; Reactive Oxygen Species/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...