ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Binding Sites  (305)
  • American Association for the Advancement of Science (AAAS)  (305)
  • American Institute of Physics
  • Cambridge University Press
  • 2005-2009  (87)
  • 1995-1999  (110)
  • 1990-1994  (99)
  • 1980-1984  (9)
  • 1970-1974
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (305)
  • American Institute of Physics
  • Cambridge University Press
  • Nature Publishing Group (NPG)  (22)
Years
Year
  • 1
    Publication Date: 1999-07-31
    Description: Estrogen receptor alpha transcriptional activity is regulated by distinct conformational states that are the result of ligand binding. Phage display was used to identify peptides that interact specifically with either estradiol- or tamoxifen-activated estrogen receptor alpha. When these peptides were coexpressed with estrogen receptor alpha in cells, they functioned as ligand-specific antagonists, indicating that estradiol-agonist and tamoxifen-partial agonist activities do not occur by the same mechanism. The ability to regulate estrogen receptor alpha transcriptional activity by targeting sites outside of the ligand-binding pocket has implications for the development of estrogen receptor alpha antagonists for the treatment of tamoxifen-refractory breast cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Norris, J D -- Paige, L A -- Christensen, D J -- Chang, C Y -- Huacani, M R -- Fan, D -- Hamilton, P T -- Fowlkes, D M -- McDonnell, D P -- DK48807/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):744-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Duke University Medical Center, Department of Pharmacology and Cancer Biology, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10426998" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Estradiol/metabolism/*pharmacology ; Estrogen Antagonists/*pharmacology ; Estrogen Receptor alpha ; Humans ; Ligands ; Mifepristone/pharmacology ; Molecular Sequence Data ; Peptide Library ; Peptides/metabolism/*pharmacology ; Receptors, Cytoplasmic and Nuclear/metabolism ; Receptors, Estrogen/agonists/*antagonists & inhibitors/chemistry/*metabolism ; Recombinant Fusion Proteins/pharmacology ; Tamoxifen/metabolism/*pharmacology ; Transcription Factor AP-1/genetics/metabolism ; Transcription, Genetic/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-06-26
    Description: Motilin is a 22-amino acid peptide hormone expressed throughout the gastrointestinal (GI) tract of humans and other species. It affects gastric motility by stimulating interdigestive antrum and duodenal contractions. A heterotrimeric guanosine triphosphate-binding protein (G protein)-coupled receptor for motilin was isolated from human stomach, and its amino acid sequence was found to be 52 percent identical to the human receptor for growth hormone secretagogues. The macrolide antibiotic erythromycin also interacted with the cloned motilin receptor, providing a molecular basis for its effects on the human GI tract. The motilin receptor is expressed in enteric neurons of the human duodenum and colon. Development of motilin receptor agonists and antagonists may be useful in the treatment of multiple disorders of GI motility.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feighner, S D -- Tan, C P -- McKee, K K -- Palyha, O C -- Hreniuk, D L -- Pong, S S -- Austin, C P -- Figueroa, D -- MacNeil, D -- Cascieri, M A -- Nargund, R -- Bakshi, R -- Abramovitz, M -- Stocco, R -- Kargman, S -- O'Neill, G -- Van Der Ploeg, L H -- Evans, J -- Patchett, A A -- Smith, R G -- Howard, A D -- New York, N.Y. -- Science. 1999 Jun 25;284(5423):2184-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Metabolic Disorders, Department of Medicinal Chemistry, Merck Research Laboratories, Building RY-80Y-265, 126 East Lincoln Avenue, Rahway, NJ 07065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10381885" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Base Sequence ; Binding Sites ; Calcium/metabolism ; Cell Line ; Chromosome Mapping ; Chromosomes, Human, Pair 13 ; Cloning, Molecular ; Colon/*metabolism ; Erythromycin/metabolism ; GTP-Binding Proteins/metabolism ; Humans ; In Situ Hybridization ; Intestine, Small/*metabolism ; Ligands ; Molecular Sequence Data ; Motilin/analogs & derivatives/*metabolism ; Receptors, Gastrointestinal Hormone/*chemistry/*genetics/metabolism ; Receptors, Neuropeptide/*chemistry/*genetics/metabolism ; Stomach/*metabolism ; Thyroid Gland/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-12-08
    Description: The site on HIV-1 gp120 that binds to the CD4 receptor is vulnerable to antibodies. However, most antibodies that interact with this site cannot neutralize HIV-1. To understand the basis of this resistance, we determined co-crystal structures for two poorly neutralizing, CD4-binding site (CD4BS) antibodies, F105 and b13, in complexes with gp120. Both antibodies exhibited approach angles to gp120 similar to those of CD4 and a rare, broadly neutralizing CD4BS antibody, b12. Slight differences in recognition, however, resulted in substantial differences in F105- and b13-bound conformations relative to b12-bound gp120. Modeling and binding experiments revealed these conformations to be poorly compatible with the viral spike. This incompatibility, the consequence of slight differences in CD4BS recognition, renders HIV-1 resistant to all but the most accurately targeted antibodies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862588/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862588/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Lei -- Kwon, Young Do -- Zhou, Tongqing -- Wu, Xueling -- O'Dell, Sijy -- Cavacini, Lisa -- Hessell, Ann J -- Pancera, Marie -- Tang, Min -- Xu, Ling -- Yang, Zhi-Yong -- Zhang, Mei-Yun -- Arthos, James -- Burton, Dennis R -- Dimitrov, Dimiter S -- Nabel, Gary J -- Posner, Marshall R -- Sodroski, Joseph -- Wyatt, Richard -- Mascola, John R -- Kwong, Peter D -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1123-7. doi: 10.1126/science.1175868.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965434" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/*immunology/metabolism ; Antigens, CD4/chemistry/*metabolism ; Binding Sites ; Binding Sites, Antibody ; Crystallography, X-Ray ; Epitopes ; HIV Antibodies/*chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/*chemistry/*immunology/metabolism ; Hiv-1 ; Humans ; Hydrophobic and Hydrophilic Interactions ; *Immune Evasion ; Models, Molecular ; Molecular Sequence Data ; Peptide Fragments/chemistry/immunology/metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-05-13
    Description: Insulin elicits a spectrum of biological responses by binding to its cell surface receptor. In a screen for small molecules that activate the human insulin receptor tyrosine kinase, a nonpeptidyl fungal metabolite (L-783,281) was identified that acted as an insulin mimetic in several biochemical and cellular assays. The compound was selective for insulin receptor versus insulin-like growth factor I (IGFI) receptor and other receptor tyrosine kinases. Oral administration of L-783,281 to two mouse models of diabetes resulted in significant lowering in blood glucose levels. These results demonstrate the feasibility of discovering novel insulin receptor activators that may lead to new therapies for diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, B -- Salituro, G -- Szalkowski, D -- Li, Z -- Zhang, Y -- Royo, I -- Vilella, D -- Diez, M T -- Pelaez, F -- Ruby, C -- Kendall, R L -- Mao, X -- Griffin, P -- Calaycay, J -- Zierath, J R -- Heck, J V -- Smith, R G -- Moller, D E -- New York, N.Y. -- Science. 1999 May 7;284(5416):974-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Endocrinology, Merck Research Laboratories, R80W250, Post Office Box 2000, Rahway, NJ 07065, USA. bei_zhang@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10320380" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Ascomycota/*metabolism ; Binding Sites ; Blood Glucose/metabolism ; CHO Cells ; Cricetinae ; Diabetes Mellitus, Type 2/*drug therapy ; Dose-Response Relationship, Drug ; Drug Evaluation, Preclinical ; Enzyme Activation ; Glucose Tolerance Test ; Hyperglycemia/drug therapy ; Hypoglycemic Agents/chemistry/metabolism/*pharmacology/therapeutic use ; Indoles/chemistry/metabolism/*pharmacology/therapeutic use ; Insulin/blood/metabolism/*pharmacology ; Insulin Receptor Substrate Proteins ; Mice ; Mice, Mutant Strains ; Mice, Obese ; Molecular Mimicry ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Conformation/drug effects ; Receptor, Epidermal Growth Factor/metabolism ; Receptor, IGF Type 1/metabolism ; Receptor, Insulin/chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-04-16
    Description: Crystal structures of the murine cytokine-inducible nitric oxide synthase oxygenase dimer with active-center water molecules, the substrate L-arginine (L-Arg), or product analog thiocitrulline reveal how dimerization, cofactor tetrahydrobiopterin, and L-Arg binding complete the catalytic center for synthesis of the essential biological signal and cytotoxin nitric oxide. Pterin binding refolds the central interface region, recruits new structural elements, creates a 30 angstrom deep active-center channel, and causes a 35 degrees helical tilt to expose a heme edge and the adjacent residue tryptophan-366 for likely reductase domain interactions and caveolin inhibition. Heme propionate interactions with pterin and L-Arg suggest that pterin has electronic influences on heme-bound oxygen. L-Arginine binds to glutamic acid-371 and stacks with heme in an otherwise hydrophobic pocket to aid activation of heme-bound oxygen by direct proton donation and thereby differentiate the two chemical steps of nitric oxide synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crane, B R -- Arvai, A S -- Ghosh, D K -- Wu, C -- Getzoff, E D -- Stuehr, D J -- Tainer, J A -- HL58883/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 27;279(5359):2121-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9516116" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/chemistry/*metabolism ; Binding Sites ; Biopterin/*analogs & derivatives/chemistry/metabolism ; Citrulline/analogs & derivatives/chemistry/metabolism ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; Isoenzymes/chemistry/metabolism ; Ligands ; Macrophages/enzymology ; Mice ; Models, Molecular ; Nitric Oxide/biosynthesis ; Nitric Oxide Synthase/*chemistry/metabolism ; Nitric Oxide Synthase Type II ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Thiourea/analogs & derivatives/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1990-05-25
    Description: An active site, cofactor-containing peptide has been obtained in high yield from bovine serum amine oxidase. Sequencing of this pentapeptide indicates: Leu-Asn-X-Asp-Tyr. Analysis of the peptide by mass spectrometry, ultraviolet-visible spectroscopy, and proton nuclear magnetic resonance leads to the identification of X as 6-hydroxydopa. This result indicates that, contrary to previous proposals, pyrroloquinoline quinone is not the active site cofactor in mammalian copper amine oxidases. Although 6-hydroxydopa has been implicated in neurotoxicity, the data presented suggest that this compound has a functional role at an enzyme active site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janes, S M -- Mu, D -- Wemmer, D -- Smith, A J -- Kaur, S -- Maltby, D -- Burlingame, A L -- Klinman, J P -- GM 39296/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 May 25;248(4958):981-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2111581" target="_blank"〉PubMed〈/a〉
    Keywords: *Amine Oxidase (Copper-Containing) ; Amino Acid Sequence ; Animals ; Binding Sites ; Cattle ; Copper ; Dihydroxyphenylalanine/*analogs & derivatives/metabolism ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Molecular Sequence Data ; Oxidoreductases/metabolism ; Oxidoreductases Acting on CH-NH Group Donors/blood/*metabolism ; Peptide Fragments/analysis/chemical synthesis ; Quinones/metabolism ; Spectrophotometry, Ultraviolet
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1990-08-03
    Description: A two-fold (C2) symmetric inhibitor of the protease of human immunodeficiency virus type-1 (HIV-1) has been designed on the basis of the three-dimensional symmetry of the enzyme active site. The symmetric molecule inhibited both protease activity and acute HIV-1 infection in vitro, was at least 10,000-fold more potent against HIV-1 protease than against related enzymes, and appeared to be stable to degradative enzymes. The 2.8 angstrom crystal structure of the inhibitor-enzyme complex demonstrated that the inhibitor binds to the enzyme in a highly symmetric fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erickson, J -- Neidhart, D J -- VanDrie, J -- Kempf, D J -- Wang, X C -- Norbeck, D W -- Plattner, J J -- Rittenhouse, J W -- Turon, M -- Wideburg, N -- AI 27220/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 3;249(4968):527-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computer-Assisted Molecular Design, Abbott Laboratories, Abbott Park, IL 60064.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2200122" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Drug Design ; Endopeptidases/*metabolism ; Gene Products, pol/*metabolism ; HIV Protease ; HIV-1/*enzymology ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Protease Inhibitors/*pharmacology ; Protein Conformation ; Sugar Alcohols/*pharmacology ; Valine/*analogs & derivatives/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-05-27
    Description: We describe a pathogenetic mechanism underlying a variant form of the inherited blood disorder alpha thalassemia. Association studies of affected individuals from Melanesia localized the disease trait to the telomeric region of human chromosome 16, which includes the alpha-globin gene cluster, but no molecular defects were detected by conventional approaches. After resequencing and using a combination of chromatin immunoprecipitation and expression analysis on a tiled oligonucleotide array, we identified a gain-of-function regulatory single-nucleotide polymorphism (rSNP) in a nongenic region between the alpha-globin genes and their upstream regulatory elements. The rSNP creates a new promoterlike element that interferes with normal activation of all downstream alpha-like globin genes. Thus, our work illustrates a strategy for distinguishing between neutral and functionally important rSNPs, and it also identifies a pathogenetic mechanism that could potentially underlie other genetic diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Gobbi, Marco -- Viprakasit, Vip -- Hughes, Jim R -- Fisher, Chris -- Buckle, Veronica J -- Ayyub, Helena -- Gibbons, Richard J -- Vernimmen, Douglas -- Yoshinaga, Yuko -- de Jong, Pieter -- Cheng, Jan-Fang -- Rubin, Edward M -- Wood, William G -- Bowden, Don -- Higgs, Douglas R -- MC_U137961143/Medical Research Council/United Kingdom -- MC_U137961145/Medical Research Council/United Kingdom -- MC_U137961147/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2006 May 26;312(5777):1215-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, OX3 9DS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16728641" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cells, Cultured ; Chromatin Immunoprecipitation ; Chromosomes, Human, Pair 16/*genetics ; Erythroblasts ; GATA1 Transcription Factor/metabolism ; Gene Expression ; Gene Expression Profiling ; Globins/*genetics ; Haplotypes ; Humans ; Melanesia ; Minisatellite Repeats ; Multigene Family ; Oligonucleotide Array Sequence Analysis ; *Polymorphism, Single Nucleotide ; *Promoter Regions, Genetic ; Regulatory Elements, Transcriptional ; Transcription, Genetic ; alpha-Thalassemia/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-04-12
    Description: Initiation of actin polymerization in cells requires nucleation factors. Here we describe an actin-binding protein, leiomodin, that acted as a strong filament nucleator in muscle cells. Leiomodin shared two actin-binding sites with the filament pointed end-capping protein tropomodulin: a flexible N-terminal region and a leucine-rich repeat domain. Leiomodin also contained a C-terminal extension of 150 residues. The smallest fragment with strong nucleation activity included the leucine-rich repeat and C-terminal extension. The N-terminal region enhanced the nucleation activity threefold and recruited tropomyosin, which weakly stimulated nucleation and mediated localization of leiomodin to the middle of muscle sarcomeres. Knocking down leiomodin severely compromised sarcomere assembly in cultured muscle cells, which suggests a role for leiomodin in the nucleation of tropomyosin-decorated filaments in muscles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845909/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845909/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chereau, David -- Boczkowska, Malgorzata -- Skwarek-Maruszewska, Aneta -- Fujiwara, Ikuko -- Hayes, David B -- Rebowski, Grzegorz -- Lappalainen, Pekka -- Pollard, Thomas D -- Dominguez, Roberto -- GM026338/GM/NIGMS NIH HHS/ -- GM073791/GM/NIGMS NIH HHS/ -- HL086655/HL/NHLBI NIH HHS/ -- P01 HL086655/HL/NHLBI NIH HHS/ -- P01 HL086655-01A10004/HL/NHLBI NIH HHS/ -- R01 GM073791/GM/NIGMS NIH HHS/ -- R01 GM073791-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 11;320(5873):239-43. doi: 10.1126/science.1155313.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boston Biomedical Research Institute, Watertown, MA 02472, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403713" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism ; Actins/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Cells, Cultured ; Cytoskeletal Proteins/chemistry/*metabolism ; Humans ; Microfilament Proteins/chemistry/*metabolism ; Molecular Sequence Data ; Muscle Proteins/chemistry/*metabolism ; Myocytes, Cardiac/*metabolism ; Protein Structure, Tertiary ; RNA Interference ; Rabbits ; Rats ; Sarcomeres/*metabolism ; Tropomodulin/chemistry ; Tropomyosin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-03-08
    Description: The creation of enzymes capable of catalyzing any desired chemical reaction is a grand challenge for computational protein design. Using new algorithms that rely on hashing techniques to construct active sites for multistep reactions, we designed retro-aldolases that use four different catalytic motifs to catalyze the breaking of a carbon-carbon bond in a nonnatural substrate. Of the 72 designs that were experimentally characterized, 32, spanning a range of protein folds, had detectable retro-aldolase activity. Designs that used an explicit water molecule to mediate proton shuffling were significantly more successful, with rate accelerations of up to four orders of magnitude and multiple turnovers, than those involving charged side-chain networks. The atomic accuracy of the design process was confirmed by the x-ray crystal structure of active designs embedded in two protein scaffolds, both of which were nearly superimposable on the design model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431203/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431203/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Lin -- Althoff, Eric A -- Clemente, Fernando R -- Doyle, Lindsey -- Rothlisberger, Daniela -- Zanghellini, Alexandre -- Gallaher, Jasmine L -- Betker, Jamie L -- Tanaka, Fujie -- Barbas, Carlos F 3rd -- Hilvert, Donald -- Houk, Kendall N -- Stoddard, Barry L -- Baker, David -- R01 CA097328/CA/NCI NIH HHS/ -- R01 GM049857/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Mar 7;319(5868):1387-91. doi: 10.1126/science.1152692.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18323453" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde-Lyases/*chemistry/metabolism ; *Algorithms ; Binding Sites ; Catalysis ; Catalytic Domain ; Computer Simulation ; Crystallography, X-Ray ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Models, Molecular ; Protein Conformation ; Protein Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...