ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-04-09
    Description: HIF (hypoxia-inducible factor) is a transcription factor that plays a pivotal role in cellular adaptation to changes in oxygen availability. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). We found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated. Because proline hydroxylation requires molecular oxygen and Fe(2+), this protein modification may play a key role in mammalian oxygen sensing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ivan, M -- Kondo, K -- Yang, H -- Kim, W -- Valiando, J -- Ohh, M -- Salic, A -- Asara, J M -- Lane, W S -- Kaelin , W G Jr -- New York, N.Y. -- Science. 2001 Apr 20;292(5516):464-8. Epub 2001 Apr 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11292862" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Cell Hypoxia ; Cell Line ; Cobalt/pharmacology ; Deferoxamine/pharmacology ; Humans ; Hydroxylation ; Hydroxyproline/*metabolism ; *Ligases ; Mass Spectrometry ; Mice ; Molecular Sequence Data ; Oxygen/*physiology ; Protein Structure, Tertiary ; Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/*metabolism ; Tumor Cells, Cultured ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Ubiquitins/metabolism ; Von Hippel-Lindau Tumor Suppressor Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-07-10
    Description: Recent advances in sequencing technologies have initiated an era of personal genome sequences. To date, human genome sequences have been reported for individuals with ancestry in three distinct geographical regions: a Yoruba African, two individuals of northwest European origin, and a person from China. Here we provide a highly annotated, whole-genome sequence for a Korean individual, known as AK1. The genome of AK1 was determined by an exacting, combined approach that included whole-genome shotgun sequencing (27.8x coverage), targeted bacterial artificial chromosome sequencing, and high-resolution comparative genomic hybridization using custom microarrays featuring more than 24 million probes. Alignment to the NCBI reference, a composite of several ethnic clades, disclosed nearly 3.45 million single nucleotide polymorphisms (SNPs), including 10,162 non-synonymous SNPs, and 170,202 deletion or insertion polymorphisms (indels). SNP and indel densities were strongly correlated genome-wide. Applying very conservative criteria yielded highly reliable copy number variants for clinical considerations. Potential medical phenotypes were annotated for non-synonymous SNPs, coding domain indels, and structural variants. The integration of several human whole-genome sequences derived from several ethnic groups will assist in understanding genetic ancestry, migration patterns and population bottlenecks.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860965/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860965/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jong-Il -- Ju, Young Seok -- Park, Hansoo -- Kim, Sheehyun -- Lee, Seonwook -- Yi, Jae-Hyuk -- Mudge, Joann -- Miller, Neil A -- Hong, Dongwan -- Bell, Callum J -- Kim, Hye-Sun -- Chung, In-Soon -- Lee, Woo-Chung -- Lee, Ji-Sun -- Seo, Seung-Hyun -- Yun, Ji-Young -- Woo, Hyun Nyun -- Lee, Heewook -- Suh, Dongwhan -- Lee, Seungbok -- Kim, Hyun-Jin -- Yavartanoo, Maryam -- Kwak, Minhye -- Zheng, Ying -- Lee, Mi Kyeong -- Park, Hyunjun -- Kim, Jeong Yeon -- Gokcumen, Omer -- Mills, Ryan E -- Zaranek, Alexander Wait -- Thakuria, Joseph -- Wu, Xiaodi -- Kim, Ryan W -- Huntley, Jim J -- Luo, Shujun -- Schroth, Gary P -- Wu, Thomas D -- Kim, HyeRan -- Yang, Kap-Seok -- Park, Woong-Yang -- Kim, Hyungtae -- Church, George M -- Lee, Charles -- Kingsmore, Stephen F -- Seo, Jeong-Sun -- HG004221/HG/NHGRI NIH HHS/ -- P20 RR016480/RR/NCRR NIH HHS/ -- P20 RR016480-08/RR/NCRR NIH HHS/ -- RR016480/RR/NCRR NIH HHS/ -- U01 AI066569/AI/NIAID NIH HHS/ -- U01 AI066569-04/AI/NIAID NIH HHS/ -- U19 HD077693/HD/NICHD NIH HHS/ -- England -- Nature. 2009 Aug 20;460(7258):1011-5. doi: 10.1038/nature08211. Epub 2009 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19587683" target="_blank"〉PubMed〈/a〉
    Keywords: Asian Continental Ancestry Group/*genetics ; Chromosomes, Artificial, Bacterial/genetics ; Comparative Genomic Hybridization ; Computational Biology ; Genome, Human/*genetics ; Humans ; INDEL Mutation/genetics ; Korea ; Oligonucleotide Array Sequence Analysis ; Polymorphism, Single Nucleotide/genetics ; Sequence Analysis, DNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-12-23
    Description: Synonymous single-nucleotide polymorphisms (SNPs) do not produce altered coding sequences, and therefore they are not expected to change the function of the protein in which they occur. We report that a synonymous SNP in the Multidrug Resistance 1 (MDR1) gene, part of a haplotype previously linked to altered function of the MDR1 gene product P-glycoprotein (P-gp), nonetheless results in P-gp with altered drug and inhibitor interactions. Similar mRNA and protein levels, but altered conformations, were found for wild-type and polymorphic P-gp. We hypothesize that the presence of a rare codon, marked by the synonymous polymorphism, affects the timing of cotranslational folding and insertion of P-gp into the membrane, thereby altering the structure of substrate and inhibitor interaction sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimchi-Sarfaty, Chava -- Oh, Jung Mi -- Kim, In-Wha -- Sauna, Zuben E -- Calcagno, Anna Maria -- Ambudkar, Suresh V -- Gottesman, Michael M -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):525-8. Epub 2006 Dec 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA. kimchi@cber.fda.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185560" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Membrane/metabolism ; Cercopithecus aethiops ; Codon ; Cyclosporine/pharmacology ; *Genes, MDR ; Haplotypes ; HeLa Cells ; Humans ; Mutagenesis, Site-Directed ; P-Glycoprotein/antagonists & inhibitors/*chemistry/genetics/*metabolism ; *Polymorphism, Single Nucleotide ; Protein Biosynthesis ; Protein Conformation ; *Protein Folding ; Protein Structure, Tertiary ; RNA, Messenger/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Rhodamine 123/metabolism/pharmacology ; Sirolimus/pharmacology ; Substrate Specificity ; Transfection ; Verapamil/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-09-23
    Description: The T cell coreceptors CD4 and CD8 both associate via their cytoplasmic tails with the N-terminus of the Src-family tyrosine kinase Lck. These interactions require zinc and are critical for T cell development and activation. We examined the folding and solution structures of ternary CD4-Lck-Zn2+ and CD8alpha-Lck-Zn2+ complexes. The coreceptor tails and the Lck N-terminus are unstructured in isolation but assemble in the presence of zinc to form compactly folded heterodimeric domains. The cofolded complexes have similar "zinc clasp" cores that are augmented by distinct structural elements. A dileucine motif required for clathrin-mediated endocytosis of CD4 is masked by Lck.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Peter W -- Sun, Zhen-Yu J -- Blacklow, Stephen C -- Wagner, Gerhard -- Eck, Michael J -- CA080942/CA/NCI NIH HHS/ -- HL61001/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1725-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500983" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Antigens, CD4/*chemistry/metabolism ; Antigens, CD8/*chemistry/metabolism ; Calorimetry ; Cytoplasm/chemistry ; Dimerization ; Dipeptides/chemistry ; Humans ; Hydrophobic and Hydrophilic Interactions ; Lymphocyte Activation ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Phosphorylation ; Phosphoserine/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Alignment ; T-Lymphocytes/immunology/physiology ; Zinc/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...