ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-04-09
    Description: Small nuclear RNAs (snRNAs) are essential factors in messenger RNA splicing. By means of homozygosity mapping and deep sequencing, we show that a gene encoding U4atac snRNA, a component of the minor U12-dependent spliceosome, is mutated in individuals with microcephalic osteodysplastic primordial dwarfism type I (MOPD I), a severe developmental disorder characterized by extreme intrauterine growth retardation and multiple organ abnormalities. Functional assays showed that mutations (30G〉A, 51G〉A, 55G〉A, and 111G〉A) associated with MOPD I cause defective U12-dependent splicing. Endogenous U12-dependent but not U2-dependent introns were found to be poorly spliced in MOPD I patient fibroblast cells. The introduction of wild-type U4atac snRNA into MOPD I cells enhanced U12-dependent splicing. These results illustrate the critical role of minor intron splicing in human development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380448/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380448/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Huiling -- Liyanarachchi, Sandya -- Akagi, Keiko -- Nagy, Rebecca -- Li, Jingfeng -- Dietrich, Rosemary C -- Li, Wei -- Sebastian, Nikhil -- Wen, Bernard -- Xin, Baozhong -- Singh, Jarnail -- Yan, Pearlly -- Alder, Hansjuerg -- Haan, Eric -- Wieczorek, Dagmar -- Albrecht, Beate -- Puffenberger, Erik -- Wang, Heng -- Westman, Judith A -- Padgett, Richard A -- Symer, David E -- de la Chapelle, Albert -- GM079527/GM/NIGMS NIH HHS/ -- GM093074/GM/NIGMS NIH HHS/ -- P30 CA16058/CA/NCI NIH HHS/ -- R01 GM079527/GM/NIGMS NIH HHS/ -- R01 GM079527-04/GM/NIGMS NIH HHS/ -- R01 GM093074/GM/NIGMS NIH HHS/ -- R01 GM093074-01A1/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):238-40. doi: 10.1126/science.1200587.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Cancer Genetics Program, Ohio State University, Columbus, OH 43210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474760" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Chromosomes, Human, Pair 2/genetics ; Dwarfism/genetics/metabolism ; Female ; Fetal Growth Retardation/genetics/metabolism ; Humans ; Introns ; Inverted Repeat Sequences ; Male ; Microcephaly/genetics/metabolism ; *Mutation ; Nucleic Acid Conformation ; Osteochondrodysplasias/genetics/metabolism ; Pedigree ; *RNA Splicing ; RNA, Small Nuclear/chemistry/*genetics/metabolism ; Spliceosomes/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-18
    Description: The inflammasome regulates the release of caspase activation-dependent cytokines, including interleukin (IL)-1beta, IL-18 and high-mobility group box 1 (HMGB1). By studying HMGB1 release mechanisms, here we identify a role for double-stranded RNA-dependent protein kinase (PKR, also known as EIF2AK2) in inflammasome activation. Exposure of macrophages to inflammasome agonists induced PKR autophosphorylation. PKR inactivation by genetic deletion or pharmacological inhibition severely impaired inflammasome activation in response to double-stranded RNA, ATP, monosodium urate, adjuvant aluminium, rotenone, live Escherichia coli, anthrax lethal toxin, DNA transfection and Salmonella typhimurium infection. PKR deficiency significantly inhibited the secretion of IL-1beta, IL-18 and HMGB1 in E. coli-induced peritonitis. PKR physically interacts with several inflammasome components, including NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3), NLRP1, NLR family CARD domain-containing protein 4 (NLRC4), absent in melanoma 2 (AIM2), and broadly regulates inflammasome activation. PKR autophosphorylation in a cell-free system with recombinant NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC, also known as PYCARD) and pro-caspase-1 reconstitutes inflammasome activity. These results show a crucial role for PKR in inflammasome activation, and indicate that it should be possible to pharmacologically target this molecule to treat inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163918/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163918/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Ben -- Nakamura, Takahisa -- Inouye, Karen -- Li, Jianhua -- Tang, Yiting -- Lundback, Peter -- Valdes-Ferrer, Sergio I -- Olofsson, Peder S -- Kalb, Thomas -- Roth, Jesse -- Zou, Yongrui -- Erlandsson-Harris, Helena -- Yang, Huan -- Ting, Jenny P-Y -- Wang, Haichao -- Andersson, Ulf -- Antoine, Daniel J -- Chavan, Sangeeta S -- Hotamisligil, Gokhan S -- Tracey, Kevin J -- DK052539/DK/NIDDK NIH HHS/ -- G0700654/Medical Research Council/United Kingdom -- R01 DK052539/DK/NIDDK NIH HHS/ -- R01 GM057226/GM/NIGMS NIH HHS/ -- R01 GM062508/GM/NIGMS NIH HHS/ -- R01 GM62508/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Aug 30;488(7413):670-4. doi: 10.1038/nature11290.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York 11030, USA. blu@nshs.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22801494" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Adenosine Triphosphate/pharmacology ; Animals ; Antigens, Bacterial/pharmacology ; Apoptosis Regulatory Proteins/metabolism ; Bacterial Toxins/pharmacology ; CARD Signaling Adaptor Proteins/metabolism ; Calcium-Binding Proteins/metabolism ; Carrier Proteins/metabolism ; Cell Line ; Cells, Cultured ; Crystallins/metabolism ; Escherichia coli/immunology/physiology ; Escherichia coli Infections/immunology/metabolism ; Female ; HMGB1 Protein/blood/*secretion ; Humans ; Inflammasomes/agonists/*metabolism ; Interleukin-18/blood ; Interleukin-1beta/blood ; Interleukin-6/analysis/blood ; Macrophages, Peritoneal/drug effects/metabolism ; Male ; Membrane Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Peritonitis/metabolism ; Phosphorylation ; RNA, Double-Stranded/immunology/pharmacology ; Rotenone/pharmacology ; Salmonella Infections/immunology/metabolism ; Salmonella typhimurium/immunology/physiology ; Transfection ; Uric Acid/pharmacology ; eIF-2 Kinase/antagonists & inhibitors/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-15
    Description: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (Kras(G12D), herein KRas) in a p53(LoxP/WT) background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376130/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376130/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Viale, Andrea -- Pettazzoni, Piergiorgio -- Lyssiotis, Costas A -- Ying, Haoqiang -- Sanchez, Nora -- Marchesini, Matteo -- Carugo, Alessandro -- Green, Tessa -- Seth, Sahil -- Giuliani, Virginia -- Kost-Alimova, Maria -- Muller, Florian -- Colla, Simona -- Nezi, Luigi -- Genovese, Giannicola -- Deem, Angela K -- Kapoor, Avnish -- Yao, Wantong -- Brunetto, Emanuela -- Kang, Ya'an -- Yuan, Min -- Asara, John M -- Wang, Y Alan -- Heffernan, Timothy P -- Kimmelman, Alec C -- Wang, Huamin -- Fleming, Jason B -- Cantley, Lewis C -- DePinho, Ronald A -- Draetta, Giulio F -- CA016672/CA/NCI NIH HHS/ -- CA16672/CA/NCI NIH HHS/ -- P01 CA117969/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01CA117969/CA/NCI NIH HHS/ -- P01CA120964/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- P30CA16672/CA/NCI NIH HHS/ -- P50 CA127003/CA/NCI NIH HHS/ -- England -- Nature. 2014 Oct 30;514(7524):628-32. doi: 10.1038/nature13611. Epub 2014 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3]. ; Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA. ; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3] Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy. ; Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; Pathology Unit, San Raffaele Scientific Institute, Milan 20132, Italy. ; Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA. ; Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ; Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119024" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy ; Carcinoma, Pancreatic Ductal/drug therapy/genetics/*metabolism/*pathology ; Cell Respiration/drug effects ; Cell Survival/drug effects ; Disease Models, Animal ; Female ; Gene Expression Regulation, Neoplastic ; Genes, p53/genetics ; Glycolysis ; Lysosomes/metabolism ; Mice ; Mitochondria/drug effects/*metabolism ; Mutation/genetics ; Neoplasm Recurrence, Local/prevention & control ; Neoplastic Stem Cells/drug effects/metabolism/pathology ; Oxidative Phosphorylation/drug effects ; Pancreatic Neoplasms/drug therapy/genetics/*metabolism/*pathology ; Proto-Oncogene Proteins p21(ras)/*genetics/metabolism ; Recurrence ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-09-21
    Description: The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Guofan -- Fang, Xiaodong -- Guo, Ximing -- Li, Li -- Luo, Ruibang -- Xu, Fei -- Yang, Pengcheng -- Zhang, Linlin -- Wang, Xiaotong -- Qi, Haigang -- Xiong, Zhiqiang -- Que, Huayong -- Xie, Yinlong -- Holland, Peter W H -- Paps, Jordi -- Zhu, Yabing -- Wu, Fucun -- Chen, Yuanxin -- Wang, Jiafeng -- Peng, Chunfang -- Meng, Jie -- Yang, Lan -- Liu, Jun -- Wen, Bo -- Zhang, Na -- Huang, Zhiyong -- Zhu, Qihui -- Feng, Yue -- Mount, Andrew -- Hedgecock, Dennis -- Xu, Zhe -- Liu, Yunjie -- Domazet-Loso, Tomislav -- Du, Yishuai -- Sun, Xiaoqing -- Zhang, Shoudu -- Liu, Binghang -- Cheng, Peizhou -- Jiang, Xuanting -- Li, Juan -- Fan, Dingding -- Wang, Wei -- Fu, Wenjing -- Wang, Tong -- Wang, Bo -- Zhang, Jibiao -- Peng, Zhiyu -- Li, Yingxiang -- Li, Na -- Wang, Jinpeng -- Chen, Maoshan -- He, Yan -- Tan, Fengji -- Song, Xiaorui -- Zheng, Qiumei -- Huang, Ronglian -- Yang, Hailong -- Du, Xuedi -- Chen, Li -- Yang, Mei -- Gaffney, Patrick M -- Wang, Shan -- Luo, Longhai -- She, Zhicai -- Ming, Yao -- Huang, Wen -- Zhang, Shu -- Huang, Baoyu -- Zhang, Yong -- Qu, Tao -- Ni, Peixiang -- Miao, Guoying -- Wang, Junyi -- Wang, Qiang -- Steinberg, Christian E W -- Wang, Haiyan -- Li, Ning -- Qian, Lumin -- Zhang, Guojie -- Li, Yingrui -- Yang, Huanming -- Liu, Xiao -- Wang, Jian -- Yin, Ye -- Wang, Jun -- 268513/European Research Council/International -- England -- Nature. 2012 Oct 4;490(7418):49-54. doi: 10.1038/nature11413. Epub 2012 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22992520" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Animal Shells/chemistry/*growth & development ; Animals ; Apoptosis Regulatory Proteins/genetics ; Crassostrea/*genetics ; DNA Transposable Elements/genetics ; Evolution, Molecular ; Female ; Gene Expression Regulation, Developmental/genetics ; Genes, Homeobox/genetics ; Genome/*genetics ; Genomics ; HSP70 Heat-Shock Proteins/genetics ; Humans ; Larva/genetics/growth & development ; Mass Spectrometry ; Molecular Sequence Annotation ; Molecular Sequence Data ; Polymorphism, Genetic/genetics ; Repetitive Sequences, Nucleic Acid/genetics ; Sequence Analysis, DNA ; Stress, Physiological/genetics/*physiology ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-11-06
    Description: The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial beta-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial beta-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial beta-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3110694/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3110694/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wallace, Bret D -- Wang, Hongwei -- Lane, Kimberly T -- Scott, John E -- Orans, Jillian -- Koo, Ja Seol -- Venkatesh, Madhukumar -- Jobin, Christian -- Yeh, Li-An -- Mani, Sridhar -- Redinbo, Matthew R -- CA127231/CA/NCI NIH HHS/ -- CA98468/CA/NCI NIH HHS/ -- R01 CA127231/CA/NCI NIH HHS/ -- R01 CA127231-01A2/CA/NCI NIH HHS/ -- R01 CA127231-02/CA/NCI NIH HHS/ -- R01 CA127231-03/CA/NCI NIH HHS/ -- R01 CA161879/CA/NCI NIH HHS/ -- R01 DK073338/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 5;330(6005):831-5. doi: 10.1126/science.1191175.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21051639" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents, Phytogenic/metabolism/*toxicity ; Bacteria, Anaerobic/drug effects ; Camptothecin/*analogs & derivatives/metabolism/toxicity ; Cell Line, Tumor ; Colon/drug effects/microbiology/pathology ; Crystallography, X-Ray ; Diarrhea/prevention & control ; Drug Evaluation, Preclinical ; Enzyme Inhibitors/chemistry/metabolism/*pharmacology ; Escherichia coli/enzymology ; Escherichia coli Proteins/antagonists & inhibitors/chemistry/isolation & ; purification/metabolism ; Female ; Glucuronidase/*antagonists & inhibitors/chemistry/isolation & ; purification/metabolism/*pharmacology ; Humans ; Intestinal Mucosa/drug effects/microbiology/pathology ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Prodrugs/metabolism/toxicity ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...