ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-10-30
    Description: Author(s): A. Kretinin, G. L. Yu, R. Jalil, Y. Cao, F. Withers, A. Mishchenko, M. I. Katsnelson, K. S. Novoselov, A. K. Geim, and F. Guinea The next-nearest-neighbor hopping term t ′ determines a magnitude, and, hence, the importance of several phenomena in graphene that include self-doping due to broken bonds and the Klein tunneling, which in the presence of t ′ , is no longer perfect. Theoretical estimates for t ′ vary widely, whereas a f... [Phys. Rev. B 88, 165427] Published Tue Oct 29, 2013
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-15
    Print ISSN: 0004-637X
    Electronic ISSN: 1538-4357
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-08
    Description: We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory-generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 μm and 10 μm, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Ångström exponent of absorption (AEA), and Ångström exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-11-16
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-07-26
    Description: Aerosol variations and trends over different land and ocean regions during 1980–2009 are analyzed with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model and observations from multiple satellite sensors and ground-based networks. Excluding time periods with large volcanic influences, the tendency of aerosol optical depth (AOD) and surface concentration over polluted land regions is consistent with the anthropogenic emission changes. The largest reduction occurs over Europe, and regions in North America and Russia also exhibit reductions. On the other hand, East Asia and South Asia show AOD increases, although relatively large amount of natural aerosols in Asia makes the total changes less directly connected to the pollutant emission trends. Over major dust source regions, model analysis indicates that the dust emissions over the Sahara and Sahel respond mainly to the near-surface wind speed, but over Central Asia they are largely influenced by ground wetness. The decreasing dust trend in the tropical North Atlantic is most closely associated with the decrease of Sahel dust emission and increase of precipitation over the tropical North Atlantic, likely driven by the sea surface temperature increase. Despite significant regional trends, the model-calculated global annual average AOD shows little changes over land and ocean in the past three decades, because opposite trends in different regions cancel each other in the global average. This highlights the need for regional-scale aerosol assessment, as the global average value conceals regional changes, and thus is not sufficient for assessing changes in aerosol loading.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-10
    Description: Aerosol variations and trends over different land and ocean regions from 1980 to 2009 are analyzed with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model and observations from multiple satellite sensors and available ground-based networks. Excluding time periods with large volcanic influence, aerosol optical depth (AOD) and surface concentration over polluted land regions generally vary with anthropogenic emissions, but the magnitude of this association can be dampened by the presence of natural aerosols, especially dust. Over the 30-year period in this study, the largest reduction in aerosol levels occurs over Europe, where AOD has decreased by 40–60% on average and surface sulfate concentrations have declined by a factor of up to 3–4. In contrast, East Asia and South Asia show AOD increases, but the relatively high level of dust aerosols in Asia reduces the correlation between AOD and pollutant emission trends. Over major dust source regions, model analysis indicates that the change of dust emissions over the Sahara and Sahel has been predominantly driven by the change of near-surface wind speed, but over Central Asia it has been largely influenced by the change of the surface wetness. The decreasing dust trend in the North African dust outflow region of the tropical North Atlantic and the receptor sites of Barbados and Miami is closely associated with an increase of the sea surface temperature in the North Atlantic. This temperature increase may drive the decrease of the wind velocity over North Africa, which reduces the dust emission, and the increase of precipitation over the tropical North Atlantic, which enhances dust removal during transport. Despite significant trends over some major continental source regions, the model-calculated global annual average AOD shows little change over land and ocean in the past three decades, because opposite trends in different land regions cancel each other out in the global average, and changes over large open oceans are negligible. This highlights the necessity for regional-scale assessment of aerosols and their climate impacts, as global-scale average values can obscure important regional changes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-09-08
    Description: We present the first laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet (UV) wavelength (i.e. 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory-generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Exact T-matrix method calculations were used to model the absorption and scattering characteristics of fractal-like agglomerates of different compactness and varying number of monomers. With these calculations, we attempted to estimate the number of monomers and fractal dimension of laboratory generated kerosene soot. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009, and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 μm and 10 μm, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Ångström exponent of absorption (AEA), and Ångström exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The results of photometric and polarimetric observations carried out for some bright atmosphere-less bodies of the Solar system near the zero phase angle reveal the simultaneous existence of two spectacular optical phenomena, the so-called brightness and polarization opposition effects. In a number of studies, these phenomena were explained by the influence of coherent backscattering. However, in general, the interference concept of coherent backscattering can be used only in the case where the particles are in the far-field zones of each other, i.e., when the scattering medium is rather rarefied. Because of this, it is important to prove rigorously and to demonstrate that the coherent backscattering effect may also exist in densely packed scattering media like regolith surface layers of celestial bodies. From the results of the computer modeling performed with the use of numerically exact solutions of the macroscopic Maxwell equations for discrete random media with different packing densities of particles, we studied the origin and evolution of all the opposition phenomena predicted by the coherent backscattering theory for low-packing-density media. It has been shown that the predictions of this theory remain valid for rather high-packing densities of particles that are typical, in particular, of regolith surfaces of the Solar system bodies. The results allow us to conclude that both opposition effects observed simultaneously in some high-albedo atmosphereless bodies of the Solar system are caused precisely by coherent backscattering of solar light in the regolith layers composed of microscopic particles.
    Keywords: Lunar and Planetary Science and Exploration; Optics
    Type: GSFC-E-DAA-TN13585 , Solar System Research; 47; 6; 454-462
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: A general-purpose Fortran-90 code for calculation of the electromagnetic scattering and absorption properties of multiple sphere clusters is described. The code can calculate the efficiency factors and scattering matrix elements of the cluster for either fixed or random orientation with respect to the incident beam and for plane wave or localized- approximation Gaussian incident fields. In addition, the code can calculate maps of the electric field both interior and exterior to the spheres.The code is written with message passing interface instructions to enable the use on distributed memory compute clusters, and for such platforms the code can make feasible the calculation of absorption, scattering, and general EM characteristics of systems containing several thousand spheres.
    Keywords: Computer Programming and Software
    Type: GSFC.JA.00362.2012 , Journal of Quantitative Spectroscopy and Radiative Transfer; 112; 13; 2182-2192
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM (sub 2.5) and PM( sub 10) (particulate matter with aerodynamic diameters less than 2.5 micrometers and 10 micrometers, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN8875 , Atmospheric Chemistry and Physics; 12; 5; 2587-2601
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...