ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (10)
  • Mice  (10)
  • 2010-2014  (9)
  • 1995-1999  (1)
Collection
  • Articles  (10)
Years
Year
  • 1
    Publication Date: 2010-01-16
    Description: Integrins mediate cell adhesion to the extracellular matrix and transmit signals within the cell that stimulate cell spreading, retraction, migration, and proliferation. The mechanism of integrin outside-in signaling has been unclear. We found that the heterotrimeric guanine nucleotide-binding protein (G protein) Galpha13 directly bound to the integrin beta3 cytoplasmic domain and that Galpha13-integrin interaction was promoted by ligand binding to the integrin alphaIIbbeta3 and by guanosine triphosphate (GTP) loading of Galpha13. Interference of Galpha13 expression or a myristoylated fragment of Galpha13 that inhibited interaction of alphaIIbbeta3 with Galpha13 diminished activation of protein kinase c-Src and stimulated the small guanosine triphosphatase RhoA, consequently inhibiting cell spreading and accelerating cell retraction. We conclude that integrins are noncanonical Galpha13-coupled receptors that provide a mechanism for dynamic regulation of RhoA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gong, Haixia -- Shen, Bo -- Flevaris, Panagiotis -- Chow, Christina -- Lam, Stephen C-T -- Voyno-Yasenetskaya, Tatyana A -- Kozasa, Tohru -- Du, Xiaoping -- GM061454/GM/NIGMS NIH HHS/ -- GM074001/GM/NIGMS NIH HHS/ -- HL062350/HL/NHLBI NIH HHS/ -- HL068819/HL/NHLBI NIH HHS/ -- HL080264/HL/NHLBI NIH HHS/ -- R01 GM061454/GM/NIGMS NIH HHS/ -- R01 GM061454-09/GM/NIGMS NIH HHS/ -- R01 GM074001/GM/NIGMS NIH HHS/ -- R01 GM074001-02/GM/NIGMS NIH HHS/ -- R01 HL062350/HL/NHLBI NIH HHS/ -- R01 HL062350-09/HL/NHLBI NIH HHS/ -- R01 HL068819/HL/NHLBI NIH HHS/ -- R01 HL068819-08/HL/NHLBI NIH HHS/ -- R01 HL080264/HL/NHLBI NIH HHS/ -- R01 HL080264-04/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):340-3. doi: 10.1126/science.1174779.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Illinois at Chicago, 835 South Wolcott Avenue, Room E403, Chicago, IL 60612, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Blood Platelets/*physiology ; Clot Retraction ; Fibrinogen/metabolism ; GTP-Binding Protein alpha Subunits, G12-G13/genetics/*metabolism ; Humans ; Integrin beta3/*metabolism ; Ligands ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; Platelet Adhesiveness ; Platelet Glycoprotein GPIIb-IIIa Complex/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Proto-Oncogene Proteins pp60(c-src)/metabolism ; RNA, Small Interfering ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; rhoA GTP-Binding Protein/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-10
    Description: Retroviruses, including HIV, can activate innate immune responses, but the host sensors for retroviruses are largely unknown. Here we show that HIV infection activates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) to produce cGAMP, which binds to and activates the adaptor protein STING to induce type I interferons and other cytokines. Inhibitors of HIV reverse transcriptase, but not integrase, abrogated interferon-beta induction by the virus, suggesting that the reverse-transcribed HIV DNA triggers the innate immune response. Knockout or knockdown of cGAS in mouse or human cell lines blocked cytokine induction by HIV, murine leukemia virus, and simian immunodeficiency virus. These results indicate that cGAS is an innate immune sensor of HIV and other retroviruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Daxing -- Wu, Jiaxi -- Wu, You-Tong -- Du, Fenghe -- Aroh, Chukwuemika -- Yan, Nan -- Sun, Lijun -- Chen, Zhijian J -- R01 AI093967/AI/NIAID NIH HHS/ -- R01 AI098569/AI/NIAID NIH HHS/ -- R01-AI093967/AI/NIAID NIH HHS/ -- R01-AI098569/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 23;341(6148):903-6. doi: 10.1126/science.1240933. Epub 2013 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929945" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Gene Knockdown Techniques ; HEK293 Cells ; HIV/drug effects/enzymology/*immunology ; HIV Infections/enzymology/*immunology/virology ; HIV Reverse Transcriptase/antagonists & inhibitors ; Humans ; *Immunity, Innate ; Interferon-beta/biosynthesis ; Membrane Proteins/metabolism ; Mice ; Nucleotidyltransferases/genetics/*metabolism ; Retroviridae/immunology ; Retroviridae Infections/enzymology/immunology/virology ; Reverse Transcriptase Inhibitors/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-12-22
    Description: The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers host immune responses such as the production of type I interferons. Cytosolic DNA induces interferons through the production of cyclic guanosine monophosphate-adenosine monophosphate (cyclic GMP-AMP, or cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced interferon-beta in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and interferon-beta induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863629/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863629/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Lijun -- Wu, Jiaxi -- Du, Fenghe -- Chen, Xiang -- Chen, Zhijian J -- AI-093967/AI/NIAID NIH HHS/ -- R01 AI093967/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Feb 15;339(6121):786-91. doi: 10.1126/science.1232458. Epub 2012 Dec 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23258413" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Cell Line, Tumor ; Cyclic AMP/biosynthesis ; Cyclic GMP/biosynthesis ; Cytidine Triphosphate/metabolism ; Cytosol/enzymology/*immunology ; DNA/*immunology/metabolism ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Interferon Type I/*biosynthesis ; Interferon-beta/*biosynthesis ; Metabolic Networks and Pathways ; Mice ; Molecular Sequence Data ; Nucleotidyltransferases/genetics/isolation & purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-12-16
    Description: Mutations of the gene Lps selectively impede lipopolysaccharide (LPS) signal transduction in C3H/HeJ and C57BL/10ScCr mice, rendering them resistant to endotoxin yet highly susceptible to Gram-negative infection. The codominant Lpsd allele of C3H/HeJ mice was shown to correspond to a missense mutation in the third exon of the Toll-like receptor-4 gene (Tlr4), predicted to replace proline with histidine at position 712 of the polypeptide chain. C57BL/10ScCr mice are homozygous for a null mutation of Tlr4. Thus, the mammalian Tlr4 protein has been adapted primarily to subserve the recognition of LPS and presumably transduces the LPS signal across the plasma membrane. Destructive mutations of Tlr4 predispose to the development of Gram-negative sepsis, leaving most aspects of immune function intact.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poltorak, A -- He, X -- Smirnova, I -- Liu, M Y -- Van Huffel, C -- Du, X -- Birdwell, D -- Alejos, E -- Silva, M -- Galanos, C -- Freudenberg, M -- Ricciardi-Castagnoli, P -- Layton, B -- Beutler, B -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2085-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851930" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Chromosome Mapping ; Cloning, Molecular ; *Drosophila Proteins ; Genes, Dominant ; Gram-Negative Bacterial Infections/immunology ; Homozygote ; Lipopolysaccharides/*metabolism/pharmacology ; Macrophages/metabolism ; Membrane Glycoproteins/chemistry/*genetics/metabolism ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation, Missense ; Point Mutation ; RNA, Messenger/genetics/metabolism ; Receptors, Cell Surface/chemistry/*genetics/metabolism ; *Signal Transduction ; Toll-Like Receptor 4 ; Toll-Like Receptors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-10-29
    Description: Integrins have a critical role in thrombosis and haemostasis. Antagonists of the platelet integrin alphaIIbbeta3 are potent anti-thrombotic drugs, but also have the life-threatening adverse effect of causing bleeding. It is therefore desirable to develop new antagonists that do not cause bleeding. Integrins transmit signals bidirectionally. Inside-out signalling activates integrins through a talin-dependent mechanism. Integrin ligation mediates thrombus formation and outside-in signalling, which requires Galpha13 and greatly expands thrombi. Here we show that Galpha13 and talin bind to mutually exclusive but distinct sites within the integrin beta3 cytoplasmic domain in opposing waves. The first talin-binding wave mediates inside-out signalling and also ligand-induced integrin activation, but is not required for outside-in signalling. Integrin ligation induces transient talin dissociation and Galpha13 binding to an EXE motif (in which X denotes any residue), which selectively mediates outside-in signalling and platelet spreading. The second talin-binding wave is associated with clot retraction. An EXE-motif-based inhibitor of Galpha13-integrin interaction selectively abolishes outside-in signalling without affecting integrin ligation, and suppresses occlusive arterial thrombosis without affecting bleeding time. Thus, we have discovered a new mechanism for the directional switch of integrin signalling and, on the basis of this mechanism, designed a potent new anti-thrombotic drug that does not cause bleeding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823815/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823815/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Bo -- Zhao, Xiaojuan -- O'Brien, Kelly A -- Stojanovic-Terpo, Aleksandra -- Delaney, M Keegan -- Kim, Kyungho -- Cho, Jaehyung -- Lam, Stephen C-T -- Du, Xiaoping -- HL062350/HL/NHLBI NIH HHS/ -- HL080264/HL/NHLBI NIH HHS/ -- HL109439/HL/NHLBI NIH HHS/ -- R01 HL080264/HL/NHLBI NIH HHS/ -- R01 HL109439/HL/NHLBI NIH HHS/ -- T32 HL007829/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 Nov 7;503(7474):131-5. doi: 10.1038/nature12613. Epub 2013 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, Illinois 60612, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24162846" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Antithrombins/adverse effects/*pharmacology/therapeutic use ; Binding Sites ; Bleeding Time ; *Cell Polarity ; Cytoplasm/metabolism ; GTP-Binding Protein alpha Subunits, G12-G13/metabolism ; Hemorrhage/chemically induced ; Humans ; Integrin beta3/chemistry/genetics/metabolism ; Integrins/chemistry/deficiency/genetics/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Platelet Glycoprotein GPIIb-IIIa Complex/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Signal Transduction/*drug effects ; Talin/metabolism ; Thrombosis/*drug therapy/metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-01-22
    Description: Cellular senescence both protects multicellular organisms from cancer and contributes to their ageing. The pre-eminent tumour suppressor p53 has an important role in the induction and maintenance of senescence, but how it carries out this function remains poorly understood. In addition, although increasing evidence supports the idea that metabolic changes underlie many cell-fate decisions and p53-mediated tumour suppression, few connections between metabolic enzymes and senescence have been established. Here we describe a new mechanism by which p53 links these functions. We show that p53 represses the expression of the tricarboxylic-acid-cycle-associated malic enzymes ME1 and ME2 in human and mouse cells. Both malic enzymes are important for NADPH production, lipogenesis and glutamine metabolism, but ME2 has a more profound effect. Through the inhibition of malic enzymes, p53 regulates cell metabolism and proliferation. Downregulation of ME1 and ME2 reciprocally activates p53 through distinct MDM2- and AMP-activated protein kinase-mediated mechanisms in a feed-forward manner, bolstering this pathway and enhancing p53 activation. Downregulation of ME1 and ME2 also modulates the outcome of p53 activation, leading to strong induction of senescence, but not apoptosis, whereas enforced expression of either malic enzyme suppresses senescence. Our findings define physiological functions of malic enzymes, demonstrate a positive-feedback mechanism that sustains p53 activation, and reveal a connection between metabolism and senescence mediated by p53.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561500/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561500/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Peng -- Du, Wenjing -- Mancuso, Anthony -- Wellen, Kathryn E -- Yang, Xiaolu -- CA088868/CA/NCI NIH HHS/ -- P30 CA016520/CA/NCI NIH HHS/ -- R01 CA088868/CA/NCI NIH HHS/ -- England -- Nature. 2013 Jan 31;493(7434):689-93. doi: 10.1038/nature11776. Epub 2013 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23334421" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Antibiotics, Antineoplastic/pharmacology ; Cell Aging/physiology ; Cell Line ; Cell Line, Tumor ; Cell Proliferation ; Doxorubicin/pharmacology ; *Gene Expression Regulation ; Gene Knockdown Techniques ; Gene Silencing ; Glucose/metabolism ; Glutamine/metabolism ; HCT116 Cells ; Humans ; Lipids/biosynthesis ; Malate Dehydrogenase/genetics/*metabolism ; Malate Dehydrogenase (NADP+)/genetics/*metabolism ; Mice ; NADP/metabolism ; Protein Binding/drug effects ; Tumor Suppressor Protein p53/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-05-23
    Description: Despite decades of speculation that inhibiting endogenous insulin degradation might treat type-2 diabetes, and the identification of IDE (insulin-degrading enzyme) as a diabetes susceptibility gene, the relationship between the activity of the zinc metalloprotein IDE and glucose homeostasis remains unclear. Although Ide(-/-) mice have elevated insulin levels, they exhibit impaired, rather than improved, glucose tolerance that may arise from compensatory insulin signalling dysfunction. IDE inhibitors that are active in vivo are therefore needed to elucidate IDE's physiological roles and to determine its potential to serve as a target for the treatment of diabetes. Here we report the discovery of a physiologically active IDE inhibitor identified from a DNA-templated macrocycle library. An X-ray structure of the macrocycle bound to IDE reveals that it engages a binding pocket away from the catalytic site, which explains its remarkable selectivity. Treatment of lean and obese mice with this inhibitor shows that IDE regulates the abundance and signalling of glucagon and amylin, in addition to that of insulin. Under physiological conditions that augment insulin and amylin levels, such as oral glucose administration, acute IDE inhibition leads to substantially improved glucose tolerance and slower gastric emptying. These findings demonstrate the feasibility of modulating IDE activity as a new therapeutic strategy to treat type-2 diabetes and expand our understanding of the roles of IDE in glucose and hormone regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142213/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142213/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maianti, Juan Pablo -- McFedries, Amanda -- Foda, Zachariah H -- Kleiner, Ralph E -- Du, Xiu Quan -- Leissring, Malcolm A -- Tang, Wei-Jen -- Charron, Maureen J -- Seeliger, Markus A -- Saghatelian, Alan -- Liu, David R -- DP2 OD002374/OD/NIH HHS/ -- F30 CA174152/CA/NCI NIH HHS/ -- P30 DK057521/DK/NIDDK NIH HHS/ -- P41 GM111244/GM/NIGMS NIH HHS/ -- R00 GM080097/GM/NIGMS NIH HHS/ -- R01 GM065865/GM/NIGMS NIH HHS/ -- R01 GM081539/GM/NIGMS NIH HHS/ -- R01 GM81539/GM/NIGMS NIH HHS/ -- T32 GM007598/GM/NIGMS NIH HHS/ -- T32 GM008444/GM/NIGMS NIH HHS/ -- UL1 TR000430/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 3;511(7507):94-8. doi: 10.1038/nature13297. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA. ; Department of Pharmacological Sciences, Stony Brook University, 1 Circle Road, Stony Brook, New York 11794, USA. ; Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA. ; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3204 Biological Sciences III, Irvine, California 92697, USA. ; Ben-May Department for Cancer Research, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA. ; 1] Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA [2] Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847884" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Blood Glucose/metabolism ; Catalytic Domain ; Diabetes Mellitus, Type 2/drug therapy/genetics ; Disease Models, Animal ; Gastric Emptying/drug effects ; Genetic Predisposition to Disease ; Glucagon/*metabolism ; Glucose Tolerance Test ; Hypoglycemic Agents/chemistry/*pharmacology/therapeutic use ; Insulin/*metabolism ; Insulysin/*antagonists & inhibitors/chemistry/genetics/metabolism ; Islet Amyloid Polypeptide/*metabolism ; Macrocyclic Compounds/chemistry/*pharmacology/therapeutic use ; Male ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; Obesity/drug therapy/metabolism ; Signal Transduction/drug effects ; Thinness/drug therapy/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-11-15
    Description: Silent information regulator 2 (Sir2) proteins (sirtuins) are nicotinamide adenine dinucleotide-dependent deacetylases that regulate important biological processes. Mammals have seven sirtuins, Sirt1 to Sirt7. Four of them (Sirt4 to Sirt7) have no detectable or very weak deacetylase activity. We found that Sirt5 is an efficient protein lysine desuccinylase and demalonylase in vitro. The preference for succinyl and malonyl groups was explained by the presence of an arginine residue (Arg(105)) and tyrosine residue (Tyr(102)) in the acyl pocket of Sirt5. Several mammalian proteins were identified with mass spectrometry to have succinyl or malonyl lysine modifications. Deletion of Sirt5 in mice appeared to increase the level of succinylation on carbamoyl phosphate synthase 1, which is a known target of Sirt5. Thus, protein lysine succinylation may represent a posttranslational modification that can be reversed by Sirt5 in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217313/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217313/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Du, Jintang -- Zhou, Yeyun -- Su, Xiaoyang -- Yu, Jiu Jiu -- Khan, Saba -- Jiang, Hong -- Kim, Jungwoo -- Woo, Jimin -- Kim, Jun Huyn -- Choi, Brian Hyun -- He, Bin -- Chen, Wei -- Zhang, Sheng -- Cerione, Richard A -- Auwerx, Johan -- Hao, Quan -- Lin, Hening -- 231138/European Research Council/International -- DK58920/DK/NIDDK NIH HHS/ -- P41 RR001646/RR/NCRR NIH HHS/ -- P41 RR001646-27/RR/NCRR NIH HHS/ -- R01 GM086703/GM/NIGMS NIH HHS/ -- R01 GM086703-03/GM/NIGMS NIH HHS/ -- R01 GM086703-03S1/GM/NIGMS NIH HHS/ -- R01GM086703/GM/NIGMS NIH HHS/ -- RR01646/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):806-9. doi: 10.1126/science.1207861.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22076378" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Carbamoyl-Phosphate Synthase (Ammonia)/metabolism ; Cattle ; Crystallography, X-Ray ; Histones/metabolism ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Lysine/*metabolism ; Male ; Mice ; Mice, Knockout ; Mitochondria, Liver/metabolism ; NAD/metabolism ; Peptides/*metabolism ; Protein Processing, Post-Translational ; Sirtuins/chemistry/genetics/*metabolism ; Succinic Acid/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-12-22
    Description: Cytosolic DNA induces type I interferons and other cytokines that are important for antimicrobial defense but can also result in autoimmunity. This DNA signaling pathway requires the adaptor protein STING and the transcription factor IRF3, but the mechanism of DNA sensing is unclear. We found that mammalian cytosolic extracts synthesized cyclic guanosine monophosphate-adenosine monophosphate (cyclic GMP-AMP, or cGAMP) in vitro from adenosine triphosphate and guanosine triphosphate in the presence of DNA but not RNA. DNA transfection or DNA virus infection of mammalian cells also triggered cGAMP production. cGAMP bound to STING, leading to the activation of IRF3 and induction of interferon-beta. Thus, cGAMP functions as an endogenous second messenger in metazoans and triggers interferon production in response to cytosolic DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855410/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855410/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Jiaxi -- Sun, Lijun -- Chen, Xiang -- Du, Fenghe -- Shi, Heping -- Chen, Chuo -- Chen, Zhijian J -- AI-093967/AI/NIAID NIH HHS/ -- GM-079554/GM/NIGMS NIH HHS/ -- R01 AI093967/AI/NIAID NIH HHS/ -- R01 GM079554/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Feb 15;339(6121):826-30. doi: 10.1126/science.1229963. Epub 2012 Dec 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23258412" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Extracts/chemistry ; Cell Line ; Cyclic AMP/*metabolism ; Cyclic GMP/*metabolism ; Cytosol/*immunology ; DNA/*immunology ; HEK293 Cells ; Herpesvirus 1, Human/immunology ; Humans ; *Immunity, Innate ; Interferon Regulatory Factor-3/metabolism ; Interferon-beta/biosynthesis ; Membrane Proteins/genetics/metabolism ; Mice ; Nucleotides, Cyclic/*metabolism ; RNA Interference ; Second Messenger Systems/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-04-27
    Description: The prefusion state of respiratory syncytial virus (RSV) fusion (F) glycoprotein is the target of most RSV-neutralizing activity in human sera, but its metastability has hindered characterization. To overcome this obstacle, we identified prefusion-specific antibodies that were substantially more potent than the prophylactic antibody palivizumab. The cocrystal structure for one of these antibodies, D25, in complex with the F glycoprotein revealed D25 to lock F in its prefusion state by binding to a quaternary epitope at the trimer apex. Electron microscopy showed that two other antibodies, AM22 and 5C4, also bound to the newly identified site of vulnerability, which we named antigenic site O. These studies should enable design of improved vaccine antigens and define new targets for passive prevention of RSV-induced disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459498/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459498/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McLellan, Jason S -- Chen, Man -- Leung, Sherman -- Graepel, Kevin W -- Du, Xiulian -- Yang, Yongping -- Zhou, Tongqing -- Baxa, Ulrich -- Yasuda, Etsuko -- Beaumont, Tim -- Kumar, Azad -- Modjarrad, Kayvon -- Zheng, Zizheng -- Zhao, Min -- Xia, Ningshao -- Kwong, Peter D -- Graham, Barney S -- ZIA AI005024-11/Intramural NIH HHS/ -- ZIA AI005061-10/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 May 31;340(6136):1113-7. doi: 10.1126/science.1234914. Epub 2013 Apr 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. mclellanja@niaid.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23618766" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal, Humanized/immunology ; Antibodies, Neutralizing/chemistry/*immunology ; Crystallography, X-Ray ; Female ; Glycoproteins/chemistry/*immunology ; HEK293 Cells ; Humans ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Neutralization Tests ; Palivizumab ; Protein Conformation ; Protein Multimerization ; Respiratory Syncytial Virus Vaccines/chemistry/*immunology ; Respiratory Syncytial Viruses/*immunology/physiology ; Viral Fusion Proteins/chemistry/*immunology ; Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...