ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (12)
  • American Association for the Advancement of Science (AAAS)  (12)
  • BioMed Central
  • Public Library of Science
  • 2010-2014  (2)
  • 1995-1999  (10)
  • 1955-1959
Collection
Publisher
Years
Year
  • 1
    Publication Date: 1998-10-23
    Description: Analysis of the 1,042,519-base pair Chlamydia trachomatis genome revealed unexpected features related to the complex biology of chlamydiae. Although chlamydiae lack many biosynthetic capabilities, they retain functions for performing key steps and interconversions of metabolites obtained from their mammalian host cells. Numerous potential virulence-associated proteins also were characterized. Several eukaryotic chromatin-associated domain proteins were identified, suggesting a eukaryotic-like mechanism for chlamydial nucleoid condensation and decondensation. The phylogenetic mosaic of chlamydial genes, including a large number of genes with phylogenetic origins from eukaryotes, implies a complex evolution for adaptation to obligate intracellular parasitism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, R S -- Kalman, S -- Lammel, C -- Fan, J -- Marathe, R -- Aravind, L -- Mitchell, W -- Olinger, L -- Tatusov, R L -- Zhao, Q -- Koonin, E V -- Davis, R W -- AI 39258/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Oct 23;282(5389):754-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Infectious Diseases, University of California, Berkeley, CA 94720, USA. ctgenome@socrates.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9784136" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Amino Acid Sequence ; Amino Acids/biosynthesis ; Bacterial Outer Membrane Proteins/genetics ; Bacterial Proteins/chemistry/genetics ; Biological Evolution ; Chlamydia trachomatis/classification/*genetics/metabolism/physiology ; DNA Repair ; Energy Metabolism ; Enzymes/chemistry/genetics ; *Genome, Bacterial ; Humans ; Lipids/biosynthesis ; Molecular Sequence Data ; Peptidoglycan/biosynthesis/genetics ; Phylogeny ; Protein Biosynthesis ; Recombination, Genetic ; *Sequence Analysis, DNA ; Transcription, Genetic ; Transformation, Bacterial ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-07-04
    Description: Angiogenesis is thought to depend on a precise balance of positive and negative regulation. Angiopoietin-1 (Ang1) is an angiogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase. Like vascular endothelial growth factor, Ang1 is essential for normal vascular development in the mouse. An Ang1 relative, termed angiopoietin-2 (Ang2), was identified by homology screening and shown to be a naturally occurring antagonist for Ang1 and Tie2. Transgenic overexpression of Ang2 disrupts blood vessel formation in the mouse embryo. In adult mice and humans, Ang2 is expressed only at sites of vascular remodeling. Natural antagonists for vertebrate receptor tyrosine kinases are atypical; thus, the discovery of a negative regulator acting on Tie2 emphasizes the need for exquisite regulation of this angiogenic receptor system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maisonpierre, P C -- Suri, C -- Jones, P F -- Bartunkova, S -- Wiegand, S J -- Radziejewski, C -- Compton, D -- McClain, J -- Aldrich, T H -- Papadopoulos, N -- Daly, T J -- Davis, S -- Sato, T N -- Yancopoulos, G D -- New York, N.Y. -- Science. 1997 Jul 4;277(5322):55-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9204896" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angiopoietin-1 ; Angiopoietin-2 ; Animals ; Blood Vessels/embryology/*metabolism ; Cells, Cultured ; Cloning, Molecular ; Embryo, Mammalian/metabolism ; Endothelial Growth Factors/genetics/metabolism ; Endothelium, Vascular/*cytology/metabolism ; Female ; Humans ; Ligands ; Lymphokines/genetics/metabolism ; Membrane Glycoproteins/antagonists & inhibitors/metabolism ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; *Neovascularization, Physiologic ; Phosphorylation ; Proteins/chemistry/*metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor Protein-Tyrosine Kinases/*antagonists & inhibitors/metabolism ; Receptor, TIE-2 ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-06-13
    Description: Two families of small peptides that bind to the human thrombopoietin receptor and compete with the binding of the natural ligand thrombopoietin (TPO) were identified from recombinant peptide libraries. The sequences of these peptides were not found in the primary sequence of TPO. Screening libraries of variants of one of these families under affinity-selective conditions yielded a 14-amino acid peptide (Ile-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala) with high affinity (dissociation constant approximately 2 nanomolar) that stimulates the proliferation of a TPO-responsive Ba/F3 cell line with a median effective concentration (EC50) of 400 nanomolar. Dimerization of this peptide by a carboxyl-terminal linkage to a lysine branch produced a compound with an EC50 of 100 picomolar, which was equipotent to the 332-amino acid natural cytokine in cell-based assays. The peptide dimer also stimulated the in vitro proliferation and maturation of megakaryocytes from human bone marrow cells and promoted an increase in platelet count when administered to normal mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cwirla, S E -- Balasubramanian, P -- Duffin, D J -- Wagstrom, C R -- Gates, C M -- Singer, S C -- Davis, A M -- Tansik, R L -- Mattheakis, L C -- Boytos, C M -- Schatz, P J -- Baccanari, D P -- Wrighton, N C -- Barrett, R W -- Dower, W J -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1696-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Affymax Research Institute, 4001 Miranda Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180079" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding, Competitive ; Blood Platelets/cytology ; Cell Division ; Cell Line ; Cells, Cultured ; Consensus Sequence ; Dimerization ; Erythropoietin/pharmacology ; Hematopoiesis/drug effects ; Humans ; Megakaryocytes/cytology ; Mice ; Molecular Sequence Data ; *Neoplasm Proteins ; Oligopeptides/*metabolism/*pharmacology ; Peptide Library ; Peptides/metabolism/pharmacology ; Platelet Count ; Proto-Oncogene Proteins/*agonists/metabolism ; *Receptors, Cytokine ; Receptors, Thrombopoietin ; Recombinant Proteins/metabolism/pharmacology ; Thrombopoietin/*metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-22
    Description: The NLR (nucleotide binding and oligomerization, leucine-rich repeat) family of proteins senses microbial infections and activates the inflammasome, a multiprotein complex that promotes microbial clearance. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked to several human malignancies. We found that KSHV Orf63 is a viral homolog of human NLRP1. Orf63 blocked NLRP1-dependent innate immune responses, including caspase-1 activation and processing of interleukins IL-1beta and IL-18. KSHV Orf63 interacted with NLRP1, NLRP3, and NOD2. Inhibition of Orf63 expression resulted in increased expression of IL-1beta during the KSHV life cycle. Furthermore, inhibition of NLRP1 was necessary for efficient reactivation and generation of progeny virus. The viral homolog subverts the function of cellular NLRs, which suggests that modulation of NLR-mediated innate immunity is important for the lifelong persistence of herpesviruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072027/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072027/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gregory, Sean M -- Davis, Beckley K -- West, John A -- Taxman, Debra J -- Matsuzawa, Shu-ichi -- Reed, John C -- Ting, Jenny P Y -- Damania, Blossom -- 5R21CA131645/CA/NCI NIH HHS/ -- AI057157/AI/NIAID NIH HHS/ -- AI077437/AI/NIAID NIH HHS/ -- AI56324/AI/NIAID NIH HHS/ -- AI91967/AI/NIAID NIH HHS/ -- CA096500/CA/NCI NIH HHS/ -- CA156330/CA/NCI NIH HHS/ -- DE018281/DE/NIDCR NIH HHS/ -- F32-AI78735/AI/NIAID NIH HHS/ -- R01 AI091967/AI/NIAID NIH HHS/ -- R01 CA096500/CA/NCI NIH HHS/ -- R01 CA096500-10/CA/NCI NIH HHS/ -- R01 DE018281/DE/NIDCR NIH HHS/ -- R01 DE018281-05/DE/NIDCR NIH HHS/ -- T32-AI007001/AI/NIAID NIH HHS/ -- T32-AI007419/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Jan 21;331(6015):330-4. doi: 10.1126/science.1199478.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21252346" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Amino Acid Sequence ; Apoptosis ; Apoptosis Regulatory Proteins/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Carrier Proteins/metabolism ; Caspase 1/metabolism ; Caspase Inhibitors ; Cell Line ; Cell Line, Tumor ; Herpesvirus 8, Human/genetics/immunology/*physiology ; Humans ; *Immune Evasion ; *Immunity, Innate ; Inflammasomes/*antagonists & inhibitors/metabolism ; Interleukin-1beta/metabolism ; Molecular Sequence Data ; Monocytes/virology ; Nod2 Signaling Adaptor Protein/metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Transfection ; Viral Proteins/chemistry/genetics/*metabolism ; Virus Activation ; Virus Latency ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-04-07
    Description: The expansion and contraction of specific helper T cells in the draining lymph nodes of normal mice after injection with antigen was followed. T cell receptors from purified primary and memory responder cells had highly restricted junctional regions, indicating antigen-driven selection. Selection for homogeneity in the length of the third complementarity-determining region (CDR3) occurs before selection for some of the characteristic amino acids, indicating the importance of this parameter in T cell receptor recognition. Ultimately, particular T cell receptor sequences come to predominate in the secondary response and others disappear, showing the selective preservation or expansion of specific T cell clones.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McHeyzer-Williams, M G -- Davis, M M -- New York, N.Y. -- Science. 1995 Apr 7;268(5207):106-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7535476" target="_blank"〉PubMed〈/a〉
    Keywords: Adjuvants, Immunologic ; Amino Acid Sequence ; Animals ; Antigens/*immunology ; Antigens, CD44 ; Base Sequence ; Carrier Proteins/biosynthesis ; Cell Adhesion Molecules/biosynthesis ; Immunologic Memory/*immunology ; L-Selectin ; Lymphocyte Activation/immunology ; Mice ; Molecular Sequence Data ; Receptors, Antigen, T-Cell, alpha-beta/biosynthesis/chemistry ; Receptors, Cell Surface/biosynthesis ; Receptors, Lymphocyte Homing/biosynthesis ; T-Lymphocytes, Helper-Inducer/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-06-21
    Description: ZPR1 is a zinc finger protein that binds to the cytoplasmic tyrosine kinase domain of the epidermal growth factor receptor (EGFR). Deletion analysis demonstrated that this binding interaction is mediated by the zinc fingers of ZPR1 and subdomains X and XI of the EGFR tyrosine kinase. Treatment of mammalian cells with EGF caused decreased binding of ZPR1 to the EGFR and the accumulation of ZPR1 in the nucleus. The effect of EGF to regulate ZPR1 binding is dependent on tyrosine phosphorylation of the EGFR. ZPR1 therefore represents a prototype for a class of molecule that binds to the EGFR and is released from the receptor after activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galcheva-Gargova, Z -- Konstantinov, K N -- Wu, I H -- Klier, F G -- Barrett, T -- Davis, R J -- R01-CA58396/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 21;272(5269):1797-802.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650580" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/*metabolism/secretion ; Cell Line ; Cell Nucleus/metabolism ; Cloning, Molecular ; Cytoplasm/metabolism ; Epidermal Growth Factor/pharmacology ; Humans ; Immunoblotting ; Male ; Mice ; Molecular Sequence Data ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Structure, Secondary ; RNA, Messenger/genetics/metabolism ; Receptor, Epidermal Growth Factor/chemistry/*metabolism ; Testis/metabolism ; Type C Phospholipases/metabolism ; Vanadates/pharmacology ; *Zinc Fingers ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1995-02-03
    Description: Mammalian mitogen-activated protein (MAP) kinases include extracellular signal-regulated protein kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38 subgroups. These MAP kinase isoforms are activated by dual phosphorylation on threonine and tyrosine. Two human MAP kinase kinases (MKK3 and MKK4) were cloned that phosphorylate and activate p38 MAP kinase. These MKK isoforms did not activate the ERK subgroup of MAP kinases, but MKK4 did activate JNK. These data demonstrate that the activators of p38 (MKK3 and MKK4), JNK (MKK4), and ERK (MEK1 and MEK2) define independent MAP kinase signal transduction pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Derijard, B -- Raingeaud, J -- Barrett, T -- Wu, I H -- Han, J -- Ulevitch, R J -- Davis, R J -- AI15136/AI/NIAID NIH HHS/ -- CA58396/CA/NCI NIH HHS/ -- GM37696/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1995 Feb 3;267(5198):682-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01605.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7839144" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cloning, Molecular ; Enzyme Activation ; Humans ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Kinase 3 ; *MAP Kinase Kinase 4 ; Mitogen-Activated Protein Kinase 1 ; *Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/*metabolism ; Protein-Tyrosine Kinases/chemistry/*metabolism ; *Signal Transduction ; Substrate Specificity ; Transfection ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-03-29
    Description: Upon contacting its postsynaptic target, a neuronal growth cone transforms into a presynaptic terminal. A membrane component on the growth cone that facilitates synapse formation was identified by means of a complementary DNA-based screen followed by genetic analysis. The late bloomer (lbl) gene in Drosophila encodes a member of the tetraspanin family of cell surface proteins. LBL protein is transiently expressed on motor axons, growth cones, and terminal arbors. In lbl mutant embryos, the growth cone of the RP3 motoneuron contacts its target muscles, but synapse formation is delayed and neighboring motoneurons display an increase in ectopic sprouting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kopczynski, C C -- Davis, G W -- Goodman, C S -- New York, N.Y. -- Science. 1996 Mar 29;271(5257):1867-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, Berkeley 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596956" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axons/metabolism/ultrastructure ; Cloning, Molecular ; Drosophila/embryology/genetics/physiology ; *Drosophila Proteins ; *Genes, Insect ; Membrane Proteins/chemistry/genetics/*physiology ; Molecular Sequence Data ; Motor Neurons/cytology/metabolism/*physiology ; Muscles/innervation ; Mutation ; Nerve Tissue Proteins/chemistry/genetics/*physiology ; Neuromuscular Junction/*physiology ; Presynaptic Terminals/*physiology/ultrastructure ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1995-02-17
    Description: Molecular biological studies of the mammalian inner ear have been limited by the relatively small size of the sensory endorgans contained within. The saccular otolithic organ in teleostian fish is structurally similar to its mammalian counterpart but can contain an order of magnitude more sensory cells. The prospect of the evolutionary conservation of proteins utilized in the vertebrate inner ear and the relative abundance of teleostian saccular sensory tissue made this an attractive system for molecular biological studies. A complementary DNA obtained by differential screening of a saccular complementary DNA library was identified that encodes an inner ear-specific collagen molecule.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, J G -- Oberholtzer, J C -- Burns, F R -- Greene, M I -- 5 T32 NS07064-13/NS/NINDS NIH HHS/ -- K08-DC00069/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 1995 Feb 17;267(5200):1031-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7863331" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Cloning, Molecular ; Collagen/*chemistry/*genetics ; DNA, Complementary/genetics ; *Extracellular Matrix Proteins ; *Fish Proteins ; Fishes/*genetics ; Gene Expression ; In Situ Hybridization ; Molecular Sequence Data ; Otolithic Membrane/chemistry ; RNA, Messenger/analysis/genetics ; Saccule and Utricle/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1996-10-04
    Description: Identification and characterization of antigen-specific T lymphocytes during the course of an immune response is tedious and indirect. To address this problem, the peptide-major histocompatability complex (MHC) ligand for a given population of T cells was multimerized to make soluble peptide-MHC tetramers. Tetramers of human lymphocyte antigen A2 that were complexed with two different human immunodeficiency virus (HIV)-derived peptides or with a peptide derived from influenza A matrix protein bound to peptide-specific cytotoxic T cells in vitro and to T cells from the blood of HIV-infected individuals. In general, tetramer binding correlated well with cytotoxicity assays. This approach should be useful in the analysis of T cells specific for infectious agents, tumors, and autoantigens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altman, J D -- Moss, P A -- Goulder, P J -- Barouch, D H -- McHeyzer-Williams, M G -- Bell, J I -- McMichael, A J -- Davis, M M -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1996 Oct 4;274(5284):94-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5428, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8810254" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, Viral/*immunology ; Base Sequence ; CD8-Positive T-Lymphocytes/immunology ; Cell Line ; Coloring Agents ; Epitopes/immunology ; Flow Cytometry ; Gene Products, gag/immunology ; HIV Seropositivity/*immunology ; HLA-A2 Antigen/*immunology ; Humans ; Molecular Sequence Data ; Peptide Fragments/*immunology ; Phenotype ; RNA-Directed DNA Polymerase/immunology ; T-Lymphocytes, Cytotoxic/*immunology ; Viral Matrix Proteins/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...