ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-06-20
    Description: A challenge for HIV-1 immunogen design is the difficulty of inducing neutralizing antibodies (NAbs) against neutralization-resistant (tier 2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation, BG505 SOSIP.664, induced NAbs potently against the sequence-matched tier 2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (tier 1) viruses. Tier 2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas tier 1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous tier 2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for the development of HIV-1 vaccines aimed at inducing bNAbs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498988/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498988/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanders, Rogier W -- van Gils, Marit J -- Derking, Ronald -- Sok, Devin -- Ketas, Thomas J -- Burger, Judith A -- Ozorowski, Gabriel -- Cupo, Albert -- Simonich, Cassandra -- Goo, Leslie -- Arendt, Heather -- Kim, Helen J -- Lee, Jeong Hyun -- Pugach, Pavel -- Williams, Melissa -- Debnath, Gargi -- Moldt, Brian -- van Breemen, Marielle J -- Isik, Gozde -- Medina-Ramirez, Max -- Back, Jaap Willem -- Koff, Wayne C -- Julien, Jean-Philippe -- Rakasz, Eva G -- Seaman, Michael S -- Guttman, Miklos -- Lee, Kelly K -- Klasse, Per Johan -- LaBranche, Celia -- Schief, William R -- Wilson, Ian A -- Overbaugh, Julie -- Burton, Dennis R -- Ward, Andrew B -- Montefiori, David C -- Dean, Hansi -- Moore, John P -- 280829/European Research Council/International -- HHSN27201100016C/PHS HHS/ -- P01 AI082362/AI/NIAID NIH HHS/ -- P51 OD011106/OD/NIH HHS/ -- P51OD011106/OD/NIH HHS/ -- R01 AI076105/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- R37 AI036082/AI/NIAID NIH HHS/ -- R56 AI084817/AI/NIAID NIH HHS/ -- T32 GM007266/GM/NIGMS NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2015 Jul 10;349(6244):aac4223. doi: 10.1126/science.aac4223. Epub 2015 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA. Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands. jpm2003@med.cornell.edu rws2002@med.cornell.edu. ; Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands. ; Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA. ; International AIDS Vaccine Initiative, Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA. ; Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. ; International AIDS Vaccine Initiative, New York, NY 10004, USA. ; Pepscan Therapeutics, 8243RC Lelystad, Netherlands. ; Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA. ; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, MA 02114, USA. ; Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA. ; Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA. ; Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10004, USA. Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, MA 02114, USA. ; International AIDS Vaccine Initiative, Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA. Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, MA 02114, USA. ; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA. jpm2003@med.cornell.edu rws2002@med.cornell.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089353" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/*immunology ; Animals ; Antibodies, Neutralizing/*immunology ; Cross Reactions ; Epitopes/immunology ; HIV Antibodies/*immunology ; HIV Infections/*prevention & control ; HIV-1/*immunology ; Humans ; Macaca ; Protein Engineering ; Protein Multimerization ; Rabbits ; Recombinant Proteins/chemistry/genetics/immunology ; env Gene Products, Human Immunodeficiency Virus/chemistry/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-15
    Description: The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF 〈/= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4755714/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4755714/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Hou-Feng -- Forgetta, Vincenzo -- Hsu, Yi-Hsiang -- Estrada, Karol -- Rosello-Diez, Alberto -- Leo, Paul J -- Dahia, Chitra L -- Park-Min, Kyung Hyun -- Tobias, Jonathan H -- Kooperberg, Charles -- Kleinman, Aaron -- Styrkarsdottir, Unnur -- Liu, Ching-Ti -- Uggla, Charlotta -- Evans, Daniel S -- Nielson, Carrie M -- Walter, Klaudia -- Pettersson-Kymmer, Ulrika -- McCarthy, Shane -- Eriksson, Joel -- Kwan, Tony -- Jhamai, Mila -- Trajanoska, Katerina -- Memari, Yasin -- Min, Josine -- Huang, Jie -- Danecek, Petr -- Wilmot, Beth -- Li, Rui -- Chou, Wen-Chi -- Mokry, Lauren E -- Moayyeri, Alireza -- Claussnitzer, Melina -- Cheng, Chia-Ho -- Cheung, Warren -- Medina-Gomez, Carolina -- Ge, Bing -- Chen, Shu-Huang -- Choi, Kwangbom -- Oei, Ling -- Fraser, James -- Kraaij, Robert -- Hibbs, Matthew A -- Gregson, Celia L -- Paquette, Denis -- Hofman, Albert -- Wibom, Carl -- Tranah, Gregory J -- Marshall, Mhairi -- Gardiner, Brooke B -- Cremin, Katie -- Auer, Paul -- Hsu, Li -- Ring, Sue -- Tung, Joyce Y -- Thorleifsson, Gudmar -- Enneman, Anke W -- van Schoor, Natasja M -- de Groot, Lisette C P G M -- van der Velde, Nathalie -- Melin, Beatrice -- Kemp, John P -- Christiansen, Claus -- Sayers, Adrian -- Zhou, Yanhua -- Calderari, Sophie -- van Rooij, Jeroen -- Carlson, Chris -- Peters, Ulrike -- Berlivet, Soizik -- Dostie, Josee -- Uitterlinden, Andre G -- Williams, Stephen R -- Farber, Charles -- Grinberg, Daniel -- LaCroix, Andrea Z -- Haessler, Jeff -- Chasman, Daniel I -- Giulianini, Franco -- Rose, Lynda M -- Ridker, Paul M -- Eisman, John A -- Nguyen, Tuan V -- Center, Jacqueline R -- Nogues, Xavier -- Garcia-Giralt, Natalia -- Launer, Lenore L -- Gudnason, Vilmunder -- Mellstrom, Dan -- Vandenput, Liesbeth -- Amin, Najaf -- van Duijn, Cornelia M -- Karlsson, Magnus K -- Ljunggren, Osten -- Svensson, Olle -- Hallmans, Goran -- Rousseau, Francois -- Giroux, Sylvie -- Bussiere, Johanne -- Arp, Pascal P -- Koromani, Fjorda -- Prince, Richard L -- Lewis, Joshua R -- Langdahl, Bente L -- Hermann, A Pernille -- Jensen, Jens-Erik B -- Kaptoge, Stephen -- Khaw, Kay-Tee -- Reeve, Jonathan -- Formosa, Melissa M -- Xuereb-Anastasi, Angela -- Akesson, Kristina -- McGuigan, Fiona E -- Garg, Gaurav -- Olmos, Jose M -- Zarrabeitia, Maria T -- Riancho, Jose A -- Ralston, Stuart H -- Alonso, Nerea -- Jiang, Xi -- Goltzman, David -- Pastinen, Tomi -- Grundberg, Elin -- Gauguier, Dominique -- Orwoll, Eric S -- Karasik, David -- Davey-Smith, George -- AOGC Consortium -- Smith, Albert V -- Siggeirsdottir, Kristin -- Harris, Tamara B -- Zillikens, M Carola -- van Meurs, Joyce B J -- Thorsteinsdottir, Unnur -- Maurano, Matthew T -- Timpson, Nicholas J -- Soranzo, Nicole -- Durbin, Richard -- Wilson, Scott G -- Ntzani, Evangelia E -- Brown, Matthew A -- Stefansson, Kari -- Hinds, David A -- Spector, Tim -- Cupples, L Adrienne -- Ohlsson, Claes -- Greenwood, Celia M T -- UK10K Consortium -- Jackson, Rebecca D -- Rowe, David W -- Loomis, Cynthia A -- Evans, David M -- Ackert-Bicknell, Cheryl L -- Joyner, Alexandra L -- Duncan, Emma L -- Kiel, Douglas P -- Rivadeneira, Fernando -- Richards, J Brent -- G1000143/Medical Research Council/United Kingdom -- K01 AR062655/AR/NIAMS NIH HHS/ -- MC_UU_12013/3/Medical Research Council/United Kingdom -- R01 AG005394/AG/NIA NIH HHS/ -- R01 AG005407/AG/NIA NIH HHS/ -- R01 AG027574/AG/NIA NIH HHS/ -- R01 AG027576/AG/NIA NIH HHS/ -- R01 AR035582/AR/NIAMS NIH HHS/ -- R01 AR035583/AR/NIAMS NIH HHS/ -- RC2 AR058973/AR/NIAMS NIH HHS/ -- U01 AG018197/AG/NIA NIH HHS/ -- U01 AG042140/AG/NIA NIH HHS/ -- U01 AG042143/AG/NIA NIH HHS/ -- U01 AR045580/AR/NIAMS NIH HHS/ -- U01 AR045583/AR/NIAMS NIH HHS/ -- U01 AR045614/AR/NIAMS NIH HHS/ -- U01 AR045632/AR/NIAMS NIH HHS/ -- U01 AR045647/AR/NIAMS NIH HHS/ -- U01 AR045654/AR/NIAMS NIH HHS/ -- U01 AR066160/AR/NIAMS NIH HHS/ -- England -- Nature. 2015 Oct 1;526(7571):112-7. doi: 10.1038/nature14878. Epub 2015 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, McGill University, Montreal H3A 1A2, Canada. ; Department of Medicine, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal H3T 1E2, Canada. ; Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts 02131, USA. ; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Broad Institute of MIT and Harvard, Boston, Massachusetts 02115, USA. ; Department of Internal Medicine, Erasmus Medical Center, Rotterdam 3015GE, The Netherlands. ; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA. ; The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Brisbane 4102, Australia. ; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York 10065, USA. ; Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York 10021, USA. ; Rheumatology Divison, Hospital for Special Surgery New York, New York 10021, USA. ; School of Clinical Science, University of Bristol, Bristol BS10 5NB, UK. ; MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK. ; Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; Department of Research, 23andMe, Mountain View, California 94041, USA. ; Department of Population Genomics, deCODE Genetics, Reykjavik IS-101, Iceland. ; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA. ; Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden. ; California Pacific Medical Center Research Institute, San Francisco, California 94158, USA. ; Department of Public Health and Preventive Medicine, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Bone &Mineral Unit, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK. ; Departments of Pharmacology and Clinical Neurosciences, Umea University, Umea S-901 87, Sweden. ; Department of Public Health and Clinical Medicine, Umea University, Umea SE-901 87, Sweden. ; Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg S-413 45, Sweden. ; McGill University and Genome Quebec Innovation Centre, Montreal H3A 0G1, Canada. ; Department of Epidemiology, Erasmus Medical Center, Rotterdam 3015GE, The Netherlands. ; Oregon Clinical and Translational Research Institute, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Department of Medical and Clinical Informatics, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Farr Institute of Health Informatics Research, University College London, London NW1 2DA, UK. ; Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK. ; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA. ; Department of Human Genetics, McGill University, Montreal H3A 1B1, Canada. ; Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Leiden 2300RC, The Netherlands. ; Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642, USA. ; Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal H3G 1Y6, Canada. ; Department of Computer Science, Trinity University, San Antonio, Texas 78212, USA. ; Musculoskeletal Research Unit, University of Bristol, Bristol BS10 5NB, UK. ; Department of Radiation Sciences, Umea University, Umea S-901 87, Sweden. ; School of Public Health, University of Wisconsin, Milwaukee, Wisconsin 53726, USA. ; School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK. ; Department of Statistics, deCODE Genetics, Reykjavik IS-101, Iceland. ; Department of Epidemiology and Biostatistics and the EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam 1007 MB, The Netherlands. ; Department of Human Nutrition, Wageningen University, Wageningen 6700 EV, The Netherlands. ; Department of Internal Medicine, Section Geriatrics, Academic Medical Center, Amsterdam 1105, The Netherlands. ; Nordic Bioscience, Herlev 2730, Denmark. ; Cordeliers Research Centre, INSERM UMRS 1138, Paris 75006, France. ; Institute of Cardiometabolism and Nutrition, University Pierre &Marie Curie, Paris 75013, France. ; Departments of Medicine (Cardiovascular Medicine), Centre for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA. ; Department of Genetics, University of Barcelona, Barcelona 08028, Spain. ; U-720, Centre for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona 28029, Spain. ; Department of Human Molecular Genetics, The Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain. ; Women's Health Center of Excellence Family Medicine and Public Health, University of California - San Diego, San Diego, California 92093, USA. ; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA. ; Osteoporosis &Bone Biology Program, Garvan Institute of Medical Research, Sydney 2010, Australia. ; School of Medicine Sydney, University of Notre Dame Australia, Sydney 6959, Australia. ; St. Vincent's Hospital &Clinical School, NSW University, Sydney 2010, Australia. ; Musculoskeletal Research Group, Institut Hospital del Mar d'Investigacions Mediques, Barcelona 08003, Spain. ; Cooperative Research Network on Aging and Fragility (RETICEF), Institute of Health Carlos III, 28029, Spain. ; Department of Internal Medicine, Hospital del Mar, Universitat Autonoma de Barcelona, Barcelona 08193, Spain. ; Neuroepidemiology Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Icelandic Heart Association, Kopavogur IS-201, Iceland. ; Faculty of Medicine, University of Iceland, Reykjavik IS-101, Iceland. ; Genetic epidemiology unit, Department of Epidemiology, Erasmus MC, Rotterdam 3000CA, The Netherlands. ; Department of Orthopaedics, Skane University Hospital Malmo 205 02, Sweden. ; Department of Medical Sciences, University of Uppsala, Uppsala 751 85, Sweden. ; Department of Surgical and Perioperative Sciences, Umea Unviersity, Umea 901 85, Sweden. ; Department of Molecular Biology, Medical Biochemistry and Pathology, Universite Laval, Quebec City G1V 0A6, Canada. ; Axe Sante des Populations et Pratiques Optimales en Sante, Centre de recherche du CHU de Quebec, Quebec City G1V 4G2, Canada. ; Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands 6009, Australia. ; Department of Medicine, University of Western Australia, Perth 6009, Australia. ; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C 8000, Denmark. ; Department of Endocrinology, Odense University Hospital, Odense C 5000, Denmark. ; Department of Endocrinology, Hvidovre University Hospital, Hvidovre 2650, Denmark. ; Clinical Gerontology Unit, University of Cambridge, Cambridge CB2 2QQ, UK. ; Medicine and Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK. ; Institute of Musculoskeletal Sciences, The Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK. ; Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida MSD 2080, Malta. ; Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences Malmo, Lund University, 205 02, Sweden. ; Department of Medicine and Psychiatry, University of Cantabria, Santander 39011, Spain. ; Department of Internal Medicine, Hospital U.M. Valdecilla- IDIVAL, Santander 39008, Spain. ; Department of Legal Medicine, University of Cantabria, Santander 39011, Spain. ; Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK. ; Department of Reconstructive Sciences, College of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA. ; Department of Medicine and Physiology, McGill University, Montreal H4A 3J1, Canada. ; Department of Medicine, Oregon Health &Science University, Portland, Oregon 97239, USA. ; Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 13010, Israel. ; Laboratory of Epidemiology, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; School of Medicine and Pharmacology, University of Western Australia, Crawley 6009, Australia. ; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina 45110, Greece. ; Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, Rhode Island 02903, USA. ; deCODE Genetics, Reykjavik IS-101, Iceland. ; Framingham Heart Study, Framingham, Massachusetts 01702, USA. ; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal H3A 1A2, Canada. ; Department of Oncology, Gerald Bronfman Centre, McGill University, Montreal H2W 1S6, Canada. ; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, Ohio 43210, USA. ; The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA. ; Department of Diabetes and Endocrinology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26367794" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Density/*genetics ; Bone and Bones/metabolism ; Disease Models, Animal ; Europe/ethnology ; European Continental Ancestry Group/genetics ; Exome/genetics ; Female ; Fractures, Bone/*genetics ; Gene Frequency/genetics ; Genetic Predisposition to Disease/genetics ; Genetic Variation/genetics ; Genome, Human/*genetics ; Genomics ; Genotype ; Homeodomain Proteins/*genetics ; Humans ; Mice ; Sequence Analysis, DNA ; Wnt Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-26
    Description: Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-beta, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bailey, Peter -- Chang, David K -- Nones, Katia -- Johns, Amber L -- Patch, Ann-Marie -- Gingras, Marie-Claude -- Miller, David K -- Christ, Angelika N -- Bruxner, Tim J C -- Quinn, Michael C -- Nourse, Craig -- Murtaugh, L Charles -- Harliwong, Ivon -- Idrisoglu, Senel -- Manning, Suzanne -- Nourbakhsh, Ehsan -- Wani, Shivangi -- Fink, Lynn -- Holmes, Oliver -- Chin, Venessa -- Anderson, Matthew J -- Kazakoff, Stephen -- Leonard, Conrad -- Newell, Felicity -- Waddell, Nick -- Wood, Scott -- Xu, Qinying -- Wilson, Peter J -- Cloonan, Nicole -- Kassahn, Karin S -- Taylor, Darrin -- Quek, Kelly -- Robertson, Alan -- Pantano, Lorena -- Mincarelli, Laura -- Sanchez, Luis N -- Evers, Lisa -- Wu, Jianmin -- Pinese, Mark -- Cowley, Mark J -- Jones, Marc D -- Colvin, Emily K -- Nagrial, Adnan M -- Humphrey, Emily S -- Chantrill, Lorraine A -- Mawson, Amanda -- Humphris, Jeremy -- Chou, Angela -- Pajic, Marina -- Scarlett, Christopher J -- Pinho, Andreia V -- Giry-Laterriere, Marc -- Rooman, Ilse -- Samra, Jaswinder S -- Kench, James G -- Lovell, Jessica A -- Merrett, Neil D -- Toon, Christopher W -- Epari, Krishna -- Nguyen, Nam Q -- Barbour, Andrew -- Zeps, Nikolajs -- Moran-Jones, Kim -- Jamieson, Nigel B -- Graham, Janet S -- Duthie, Fraser -- Oien, Karin -- Hair, Jane -- Grutzmann, Robert -- Maitra, Anirban -- Iacobuzio-Donahue, Christine A -- Wolfgang, Christopher L -- Morgan, Richard A -- Lawlor, Rita T -- Corbo, Vincenzo -- Bassi, Claudio -- Rusev, Borislav -- Capelli, Paola -- Salvia, Roberto -- Tortora, Giampaolo -- Mukhopadhyay, Debabrata -- Petersen, Gloria M -- Australian Pancreatic Cancer Genome Initiative -- Munzy, Donna M -- Fisher, William E -- Karim, Saadia A -- Eshleman, James R -- Hruban, Ralph H -- Pilarsky, Christian -- Morton, Jennifer P -- Sansom, Owen J -- Scarpa, Aldo -- Musgrove, Elizabeth A -- Bailey, Ulla-Maja Hagbo -- Hofmann, Oliver -- Sutherland, Robert L -- Wheeler, David A -- Gill, Anthony J -- Gibbs, Richard A -- Pearson, John V -- Waddell, Nicola -- Biankin, Andrew V -- Grimmond, Sean M -- 103721/Z/14/Z/Wellcome Trust/United Kingdom -- A12481/Cancer Research UK/United Kingdom -- A18076/Cancer Research UK/United Kingdom -- C29717/A17263/Cancer Research UK/United Kingdom -- England -- Nature. 2016 Mar 3;531(7592):47-52. doi: 10.1038/nature16965. Epub 2016 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. ; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. ; Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia. ; South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia. ; QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia. ; Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA. ; Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA. ; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA. ; Genetic and Molecular Pathology, SA Pathology, Adelaide, South Australia 5000, Australia. ; School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia. ; Harvard Chan Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA. ; Macarthur Cancer Therapy Centre, Campbelltown Hospital, New South Wales 2560, Australia. ; Department of Pathology. SydPath, St Vincent's Hospital, Sydney, NSW 2010, Australia. ; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2052, Australia. ; School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. ; Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia. ; University of Sydney, Sydney, New South Wales 2006, Australia. ; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown New South Wales 2050, Australia. ; School of Medicine, University of Western Sydney, Penrith, New South Wales 2175, Australia. ; Fiona Stanley Hospital, Robin Warren Drive, Murdoch, Western Australia 6150, Australia. ; Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. ; Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. ; School of Surgery M507, University of Western Australia, 35 Stirling Hwy, Nedlands 6009, Australia and St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia. ; Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK. ; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. ; Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK. ; Department of Pathology, Southern General Hospital, Greater Glasgow &Clyde NHS, Glasgow G51 4TF, UK. ; GGC Bio-repository, Pathology Department, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TY, UK. ; Department of Surgery, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany. ; Departments of Pathology and Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston Texas 77030, USA. ; The David M. Rubenstein Pancreatic Cancer Research Center and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; ARC-Net Applied Research on Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy. ; Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy. ; Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. ; Department of Medical Oncology, Comprehensive Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy. ; Mayo Clinic, Rochester, Minnesota 55905, USA. ; Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas 77030-3411, USA. ; Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK. ; Institute for Cancer Science, University of Glasgow, Glasgow G12 8QQ, UK. ; University of Melbourne, Parkville, Victoria 3010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26909576" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics ; Carcinoma, Pancreatic ; Ductal/classification/genetics/immunology/metabolism/pathology ; Cell Line, Tumor ; DNA Methylation ; DNA-Binding Proteins/genetics ; Gene Expression Regulation, Neoplastic ; Gene Regulatory Networks ; Genes, Neoplasm/*genetics ; Genome, Human/*genetics ; *Genomics ; Hepatocyte Nuclear Factor 3-beta/genetics ; Hepatocyte Nuclear Factor 3-gamma/genetics ; Histone Demethylases/genetics ; Homeodomain Proteins/genetics ; Humans ; Mice ; Mutation/*genetics ; Nuclear Proteins/genetics ; Pancreatic Neoplasms/*classification/*genetics/immunology/metabolism/pathology ; Prognosis ; Receptors, Cytoplasmic and Nuclear/genetics ; Survival Analysis ; Trans-Activators/genetics ; Transcription Factors/genetics ; Transcription, Genetic ; Transcriptome ; Tumor Suppressor Protein p53/genetics ; Tumor Suppressor Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-21
    Description: The gut microbiota plays a crucial role in the maturation of the intestinal mucosal immune system of its host. Within the thousand bacterial species present in the intestine, the symbiont segmented filamentous bacterium (SFB) is unique in its ability to potently stimulate the post-natal maturation of the B- and T-cell compartments and induce a striking increase in the small-intestinal Th17 responses. Unlike other commensals, SFB intimately attaches to absorptive epithelial cells in the ileum and cells overlying Peyer's patches. This colonization does not result in pathology; rather, it protects the host from pathogens. Yet, little is known about the SFB-host interaction that underlies the important immunostimulatory properties of SFB, because SFB have resisted in vitro culturing for more than 50 years. Here we grow mouse SFB outside their host in an SFB-host cell co-culturing system. Single-celled SFB isolated from monocolonized mice undergo filamentation, segmentation, and differentiation to release viable infectious particles, the intracellular offspring, which can colonize mice to induce signature immune responses. In vitro, intracellular offspring can attach to mouse and human host cells and recruit actin. In addition, SFB can potently stimulate the upregulation of host innate defence genes, inflammatory cytokines, and chemokines. In vitro culturing thereby mimics the in vivo niche, provides new insights into SFB growth requirements and their immunostimulatory potential, and makes possible the investigation of the complex developmental stages of SFB and the detailed dissection of the unique SFB-host interaction at the cellular and molecular levels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnupf, Pamela -- Gaboriau-Routhiau, Valerie -- Gros, Marine -- Friedman, Robin -- Moya-Nilges, Maryse -- Nigro, Giulia -- Cerf-Bensussan, Nadine -- Sansonetti, Philippe J -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 2;520(7545):99-103. doi: 10.1038/nature14027. Epub 2015 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Unite de Pathogenie Microbienne Moleculaire and Institut national de la sante et de la recherche medicale (INSERM) unit U786, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France [2] INSERM, UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 24, Boulevard du Montparnasse, 75015 Paris, France. ; 1] INSERM, UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 24, Boulevard du Montparnasse, 75015 Paris, France [2] Institut national de la recherche agronomique (INRA) Micalis UMR1319, 78350 Jouy-en-Josas, France [3] Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, 75015 Paris, France. ; 1] Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, 75015 Paris, France [2] Ecole Normale Superieure de Lyon, Department of Biology, 69007 Lyon, France. ; Unite de Pathogenie Microbienne Moleculaire and Institut national de la sante et de la recherche medicale (INSERM) unit U786, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France. ; Imagopole, Ultrastructural Microscopy Platform, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France. ; 1] INSERM, UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 24, Boulevard du Montparnasse, 75015 Paris, France [2] Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, 75015 Paris, France. ; 1] Unite de Pathogenie Microbienne Moleculaire and Institut national de la sante et de la recherche medicale (INSERM) unit U786, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France [2] Microbiologie et Maladies Infectieuses, College de France, 11 Marcelin Berthelot Square, 75005 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25600271" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Bacteria/cytology/*growth & development/*immunology ; Cell Line ; Coculture Techniques/*methods ; Escherichia coli/cytology/growth & development/immunology ; Feces/microbiology ; Female ; Germ-Free Life ; Humans ; Immunity, Mucosal/immunology ; Intestinal Mucosa/cytology/immunology/microbiology ; Intestines/cytology/*immunology/*microbiology ; Lymphocytes/cytology/*immunology ; Male ; Mice ; Microbial Viability ; Peyer's Patches/immunology ; Symbiosis/*immunology ; Th17 Cells/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-04-22
    Description: Multiple sclerosis involves an aberrant autoimmune response and progressive failure of remyelination in the central nervous system. Prevention of neural degeneration and subsequent disability requires remyelination through the generation of new oligodendrocytes, but current treatments exclusively target the immune system. Oligodendrocyte progenitor cells are stem cells in the central nervous system and the principal source of myelinating oligodendrocytes. These cells are abundant in demyelinated regions of patients with multiple sclerosis, yet fail to differentiate, thereby representing a cellular target for pharmacological intervention. To discover therapeutic compounds for enhancing myelination from endogenous oligodendrocyte progenitor cells, we screened a library of bioactive small molecules on mouse pluripotent epiblast stem-cell-derived oligodendrocyte progenitor cells. Here we show seven drugs function at nanomolar doses selectively to enhance the generation of mature oligodendrocytes from progenitor cells in vitro. Two drugs, miconazole and clobetasol, are effective in promoting precocious myelination in organotypic cerebellar slice cultures, and in vivo in early postnatal mouse pups. Systemic delivery of each of the two drugs significantly increases the number of new oligodendrocytes and enhances remyelination in a lysolecithin-induced mouse model of focal demyelination. Administering each of the two drugs at the peak of disease in an experimental autoimmune encephalomyelitis mouse model of chronic progressive multiple sclerosis results in striking reversal of disease severity. Immune response assays show that miconazole functions directly as a remyelinating drug with no effect on the immune system, whereas clobetasol is a potent immunosuppressant as well as a remyelinating agent. Mechanistic studies show that miconazole and clobetasol function in oligodendrocyte progenitor cells through mitogen-activated protein kinase and glucocorticoid receptor signalling, respectively. Furthermore, both drugs enhance the generation of human oligodendrocytes from human oligodendrocyte progenitor cells in vitro. Collectively, our results provide a rationale for testing miconazole and clobetasol, or structurally modified derivatives, to enhance remyelination in patients.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528969/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528969/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Najm, Fadi J -- Madhavan, Mayur -- Zaremba, Anita -- Shick, Elizabeth -- Karl, Robert T -- Factor, Daniel C -- Miller, Tyler E -- Nevin, Zachary S -- Kantor, Christopher -- Sargent, Alex -- Quick, Kevin L -- Schlatzer, Daniela M -- Tang, Hong -- Papoian, Ruben -- Brimacombe, Kyle R -- Shen, Min -- Boxer, Matthew B -- Jadhav, Ajit -- Robinson, Andrew P -- Podojil, Joseph R -- Miller, Stephen D -- Miller, Robert H -- Tesar, Paul J -- F30 CA183510/CA/NCI NIH HHS/ -- F30CA183510/CA/NCI NIH HHS/ -- NS026543/NS/NINDS NIH HHS/ -- NS030800/NS/NINDS NIH HHS/ -- NS085246/NS/NINDS NIH HHS/ -- P30 CA043703/CA/NCI NIH HHS/ -- P30CA043703/CA/NCI NIH HHS/ -- R01 NS026543/NS/NINDS NIH HHS/ -- R01 NS030800/NS/NINDS NIH HHS/ -- R21 NS085246/NS/NINDS NIH HHS/ -- T32 GM007250/GM/NIGMS NIH HHS/ -- T32 GM008056/GM/NIGMS NIH HHS/ -- T32GM008056/GM/NIGMS NIH HHS/ -- UL1 TR000439/TR/NCATS NIH HHS/ -- England -- Nature. 2015 Jun 11;522(7555):216-20. doi: 10.1038/nature14335. Epub 2015 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA. ; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA. ; 1] Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA [2] Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA [3] Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA. ; PerkinElmer, 940 Winter Street, Waltham, Massachusetts 02451, USA. ; Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA. ; Drug Discovery Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237, USA. ; National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA. ; Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, Illinois 60611, USA. ; 1] Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA [2] Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25896324" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/drug effects ; Cerebellum/drug effects/metabolism/pathology ; Clobetasol/*pharmacology ; Demyelinating Diseases/drug therapy/metabolism/pathology ; Disease Models, Animal ; Encephalomyelitis, Autoimmune, Experimental/drug therapy/metabolism/pathology ; Female ; Germ Layers/drug effects/metabolism/pathology ; Humans ; Lysophosphatidylcholines ; MAP Kinase Signaling System ; Male ; Mice ; Miconazole/*pharmacology ; Mitogen-Activated Protein Kinases/metabolism ; Multiple Sclerosis/*drug therapy/*metabolism/pathology ; Myelin Sheath/*drug effects/*metabolism ; Oligodendroglia/cytology/drug effects/metabolism ; Phenotype ; Pluripotent Stem Cells/cytology/*drug effects/metabolism ; Receptors, Glucocorticoid/metabolism ; Regeneration/drug effects ; Tissue Culture Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-03-25
    Description: Visualizing the physical basis for molecular behaviour inside living cells is a great challenge for biology. RNAs are central to biological regulation, and the ability of RNA to adopt specific structures intimately controls every step of the gene expression program. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles include only two of the four nucleotides that make up RNA. Here we present a novel biochemical approach, in vivo click selective 2'-hydroxyl acylation and profiling experiment (icSHAPE), which enables the first global view, to our knowledge, of RNA secondary structures in living cells for all four bases. icSHAPE of the mouse embryonic stem cell transcriptome versus purified RNA folded in vitro shows that the structural dynamics of RNA in the cellular environment distinguish different classes of RNAs and regulatory elements. Structural signatures at translational start sites and ribosome pause sites are conserved from in vitro conditions, suggesting that these RNA elements are programmed by sequence. In contrast, focal structural rearrangements in vivo reveal precise interfaces of RNA with RNA-binding proteins or RNA-modification sites that are consistent with atomic-resolution structural data. Such dynamic structural footprints enable accurate prediction of RNA-protein interactions and N(6)-methyladenosine (m(6)A) modification genome wide. These results open the door for structural genomics of RNA in living cells and reveal key physiological structures controlling gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376618/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376618/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spitale, Robert C -- Flynn, Ryan A -- Zhang, Qiangfeng Cliff -- Crisalli, Pete -- Lee, Byron -- Jung, Jong-Wha -- Kuchelmeister, Hannes Y -- Batista, Pedro J -- Torre, Eduardo A -- Kool, Eric T -- Chang, Howard Y -- F30 CA189514/CA/NCI NIH HHS/ -- F30CA189514/CA/NCI NIH HHS/ -- P50 HG007735/HG/NHGRI NIH HHS/ -- P50HG007735/HG/NHGRI NIH HHS/ -- R01 HG004361/HG/NHGRI NIH HHS/ -- R01HG004361/HG/NHGRI NIH HHS/ -- T32 CA009302/CA/NCI NIH HHS/ -- T32AR007422/AR/NIAMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Mar 26;519(7544):486-90. doi: 10.1038/nature14263. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Chemistry, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799993" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Adenosine/analogs & derivatives ; Animals ; Binding Sites ; Cell Survival ; Click Chemistry ; Computational Biology ; Embryonic Stem Cells/cytology/metabolism ; *Gene Expression Regulation/genetics ; Genome/genetics ; Mice ; Models, Molecular ; *Nucleic Acid Conformation ; Protein Biosynthesis/genetics ; RNA/*chemistry/classification/*genetics/metabolism ; RNA-Binding Proteins/metabolism ; Regulatory Sequences, Ribonucleic Acid/genetics ; Ribosomes/metabolism ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-15
    Description: Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromatin assembly factor-1 (CAF-1) complex, including Chaf1a and Chaf1b, emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPS cell formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 to be a novel regulator of somatic cell identity during transcription-factor-induced cell-fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheloufi, Sihem -- Elling, Ulrich -- Hopfgartner, Barbara -- Jung, Youngsook L -- Murn, Jernej -- Ninova, Maria -- Hubmann, Maria -- Badeaux, Aimee I -- Euong Ang, Cheen -- Tenen, Danielle -- Wesche, Daniel J -- Abazova, Nadezhda -- Hogue, Max -- Tasdemir, Nilgun -- Brumbaugh, Justin -- Rathert, Philipp -- Jude, Julian -- Ferrari, Francesco -- Blanco, Andres -- Fellner, Michaela -- Wenzel, Daniel -- Zinner, Marietta -- Vidal, Simon E -- Bell, Oliver -- Stadtfeld, Matthias -- Chang, Howard Y -- Almouzni, Genevieve -- Lowe, Scott W -- Rinn, John -- Wernig, Marius -- Aravin, Alexei -- Shi, Yang -- Park, Peter J -- Penninger, Josef M -- Zuber, Johannes -- Hochedlinger, Konrad -- P50-HG007735/HG/NHGRI NIH HHS/ -- R01 HD058013-06/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Dec 10;528(7581):218-24. doi: 10.1038/nature15749.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA. ; Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria. ; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria. ; Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. ; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA. ; Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology and Department of Bioengineering, Stanford University, Stanford, California 94305, USA. ; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA. ; Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA. ; Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Centre de Recherche, Institut Curie, 75248 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26659182" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cellular Reprogramming/*genetics ; Chromatin/metabolism ; Chromatin Assembly Factor-1/antagonists & inhibitors/genetics/*metabolism ; Gene Expression Regulation/genetics ; Heterochromatin/metabolism ; Mice ; Nucleosomes/metabolism ; RNA Interference ; Transduction, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-03-06
    Description: In Drosophila, rapid temperature changes are detected at the periphery by dedicated receptors forming a simple sensory map for hot and cold in the brain. However, flies show a host of complex innate and learned responses to temperature, indicating that they are able to extract a range of information from this simple input. Here we define the anatomical and physiological repertoire for temperature representation in the Drosophila brain. First, we use a photolabelling strategy to trace the connections that relay peripheral thermosensory information to higher brain centres, and show that they largely converge onto three target regions: the mushroom body, the lateral horn (both of which are well known centres for sensory processing) and the posterior lateral protocerebrum, a region we now define as a major site of thermosensory representation. Next, using in vivo calcium imaging, we describe the thermosensory projection neurons selectively activated by hot or cold stimuli. Fast-adapting neurons display transient ON and OFF responses and track rapid temperature shifts remarkably well, while slow-adapting cell responses better reflect the magnitude of simple thermal changes. Unexpectedly, we also find a population of broadly tuned cells that respond to both heating and cooling, and show that they are required for normal behavioural avoidance of both hot and cold in a simple two-choice temperature preference assay. Taken together, our results uncover a coordinated ensemble of neural responses to temperature in the Drosophila brain, demonstrate that a broadly tuned thermal line contributes to rapid avoidance behaviour, and illustrate how stimulus quality, temporal structure, and intensity can be extracted from a simple glomerular map at a single synaptic station.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4554763/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4554763/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frank, Dominic D -- Jouandet, Genevieve C -- Kearney, Patrick J -- Macpherson, Lindsey J -- Gallio, Marco -- 1R01NS086859-01/NS/NINDS NIH HHS/ -- 2T32MH067564/MH/NIMH NIH HHS/ -- R01 NS076774/NS/NINDS NIH HHS/ -- R01 NS086859/NS/NINDS NIH HHS/ -- T32 MH067564/MH/NIMH NIH HHS/ -- England -- Nature. 2015 Mar 19;519(7543):358-61. doi: 10.1038/nature14284. Epub 2015 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA. ; Departments of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25739506" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/anatomy & histology/cytology/*physiology ; Brain Mapping ; Calcium/analysis/metabolism ; Drosophila melanogaster/cytology/*physiology ; Mushroom Bodies/innervation ; *Neural Pathways ; Neurons/metabolism ; Synapses/metabolism ; *Temperature ; Thermoreceptors/metabolism ; Thermosensing/*physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-02-27
    Description: Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523082/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523082/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waddell, Nicola -- Pajic, Marina -- Patch, Ann-Marie -- Chang, David K -- Kassahn, Karin S -- Bailey, Peter -- Johns, Amber L -- Miller, David -- Nones, Katia -- Quek, Kelly -- Quinn, Michael C J -- Robertson, Alan J -- Fadlullah, Muhammad Z H -- Bruxner, Tim J C -- Christ, Angelika N -- Harliwong, Ivon -- Idrisoglu, Senel -- Manning, Suzanne -- Nourse, Craig -- Nourbakhsh, Ehsan -- Wani, Shivangi -- Wilson, Peter J -- Markham, Emma -- Cloonan, Nicole -- Anderson, Matthew J -- Fink, J Lynn -- Holmes, Oliver -- Kazakoff, Stephen H -- Leonard, Conrad -- Newell, Felicity -- Poudel, Barsha -- Song, Sarah -- Taylor, Darrin -- Waddell, Nick -- Wood, Scott -- Xu, Qinying -- Wu, Jianmin -- Pinese, Mark -- Cowley, Mark J -- Lee, Hong C -- Jones, Marc D -- Nagrial, Adnan M -- Humphris, Jeremy -- Chantrill, Lorraine A -- Chin, Venessa -- Steinmann, Angela M -- Mawson, Amanda -- Humphrey, Emily S -- Colvin, Emily K -- Chou, Angela -- Scarlett, Christopher J -- Pinho, Andreia V -- Giry-Laterriere, Marc -- Rooman, Ilse -- Samra, Jaswinder S -- Kench, James G -- Pettitt, Jessica A -- Merrett, Neil D -- Toon, Christopher -- Epari, Krishna -- Nguyen, Nam Q -- Barbour, Andrew -- Zeps, Nikolajs -- Jamieson, Nigel B -- Graham, Janet S -- Niclou, Simone P -- Bjerkvig, Rolf -- Grutzmann, Robert -- Aust, Daniela -- Hruban, Ralph H -- Maitra, Anirban -- Iacobuzio-Donahue, Christine A -- Wolfgang, Christopher L -- Morgan, Richard A -- Lawlor, Rita T -- Corbo, Vincenzo -- Bassi, Claudio -- Falconi, Massimo -- Zamboni, Giuseppe -- Tortora, Giampaolo -- Tempero, Margaret A -- Australian Pancreatic Cancer Genome Initiative -- Gill, Anthony J -- Eshleman, James R -- Pilarsky, Christian -- Scarpa, Aldo -- Musgrove, Elizabeth A -- Pearson, John V -- Biankin, Andrew V -- Grimmond, Sean M -- 103721/Wellcome Trust/United Kingdom -- C29717/A17263/Cancer Research UK/United Kingdom -- C596/A18076/Cancer Research UK/United Kingdom -- P30 CA006973/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- P50 CA062924/CA/NCI NIH HHS/ -- P50 CA62924/CA/NCI NIH HHS/ -- England -- Nature. 2015 Feb 26;518(7540):495-501. doi: 10.1038/nature14169.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Australia. ; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [3] South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia [4] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Anatomical Pathology, St Vincent's Hospital, Sydney, New South Wales 2010, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. ; 1] Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia [3] Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia. ; 1] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [2] School of Medicine, University of Western Sydney, Penrith, New South Wales 2175, Australia. ; Department of Surgery, Fremantle Hospital, Alma Street, Fremantle, Western Australia 6160, Australia. ; Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. ; Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. ; 1] School of Surgery M507, University of Western Australia, 35 Stirling Highway, Nedlands 6009, Australia [2] St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia [3] Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia 6008, Australia. ; 1] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK [2] Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK [3] West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. ; 1] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK [2] Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK. ; Norlux Neuro-Oncology Laboratory, CRP-Sante Luxembourg, 84 Val Fleuri, L-1526, Luxembourg. ; Norlux Neuro-Oncology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5019 Bergen, Norway. ; Departments of Surgery and Pathology, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany. ; Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston Texas 77030, USA. ; The David M. Rubenstein Pancreatic Cancer Research Center and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; 1] ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy [2] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy. ; ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy. ; Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. ; 1] Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy [2] Departments of Surgery and Pathology, Ospedale Sacro Cuore Don Calabria Negrar, Verona 37024, Italy. ; 1] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy [2] Departments of Surgery and Pathology, Ospedale Sacro Cuore Don Calabria Negrar, Verona 37024, Italy. ; Department of Oncology, University and Hospital Trust of Verona, Verona 37134, Italy. ; Division of Hematology and Oncology, University of California, San Francisco, California 94122, USA. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia. ; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25719666" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics ; Animals ; Carcinoma, Pancreatic Ductal/drug therapy/genetics ; *DNA Mutational Analysis ; DNA Repair/genetics ; Female ; Genes, BRCA1 ; Genes, BRCA2 ; Genetic Markers/genetics ; Genome, Human/*genetics ; Genomic Instability/genetics ; *Genomics ; Genotype ; Humans ; Mice ; Mutation/*genetics ; Pancreatic Neoplasms/classification/drug therapy/*genetics ; Platinum/pharmacology ; Point Mutation/genetics ; Poly(ADP-ribose) Polymerase Inhibitors ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-01-17
    Description: The physiological and biomechanical requirements of flight at high altitude have been the subject of much interest. Here, we uncover a steep relation between heart rate and wingbeat frequency (raised to the exponent 3.5) and estimated metabolic power and wingbeat frequency (exponent 7) of migratory bar-headed geese. Flight costs increase more rapidly than anticipated as air density declines, which overturns prevailing expectations that this species should maintain high-altitude flight when traversing the Himalayas. Instead, a "roller coaster" strategy, of tracking the underlying terrain and discarding large altitude gains only to recoup them later in the flight with occasional benefits from orographic lift, is shown to be energetically advantageous for flights over the Himalayas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bishop, C M -- Spivey, R J -- Hawkes, L A -- Batbayar, N -- Chua, B -- Frappell, P B -- Milsom, W K -- Natsagdorj, T -- Newman, S H -- Scott, G R -- Takekawa, J Y -- Wikelski, M -- Butler, P J -- BB/FO15615/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Jan 16;347(6219):250-4. doi: 10.1126/science.1258732.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, Bangor University, Bangor, Gwynedd, UK. ; School of Biological Sciences, Bangor University, Bangor, Gwynedd, UK. c.bishop@bangor.ac.uk l.hawkes@exeter.ac.uk. ; Wildlife Science and Conservation Center of Mongolia, Ulaanbataar, Mongolia. ; Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada. ; Office of the Dean of Graduate Research, University of Tasmania, Tasmania, Australia. ; Mongolian Academy of Sciences, Ulaanbataar, Mongolia. ; Emergency Prevention System(EMPRES) Wildlife and Ecology Unit, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. ; Department of Biology, McMaster University, Ontario, Ontario, Canada. ; San Francisco Bay Estuary Field Station, Western Ecological Research Center, U.S. Geological Survey, Vallejo, CA 94592 USA. ; Max Planck Institut fur Ornithologie, Radolfzell, Germany. Department of Biology, University of Konstanz, Konstanz, Germany. ; School of Biosciences, University of Birmingham, Birmingham, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25593180" target="_blank"〉PubMed〈/a〉
    Keywords: *Altitude ; *Animal Migration ; Animals ; Biomechanical Phenomena ; Body Temperature ; Body Weight ; *Energy Metabolism ; Flight, Animal/*physiology ; Geese/*physiology ; Heart Rate ; Tibet ; Wings, Animal/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...