ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-01
    Description: The main field activities of the Coordinated Airborne Studies in the Tropics (CAST) campaign took place in the west Pacific during January–February 2014. The field campaign was based in Guam (13.5°N, 144.8°E), using the U.K. Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 atmospheric research aircraft, and was coordinated with the Airborne Tropical Tropopause Experiment (ATTREX) project with an unmanned Global Hawk and the Convective Transport of Active Species in the Tropics (CONTRAST) campaign with a Gulfstream V aircraft. Together, the three aircraft were able to make detailed measurements of atmospheric structure and composition from the ocean surface to 20 km. These measurements are providing new information about the processes influencing halogen and ozone levels in the tropical west Pacific, as well as the importance of trace-gas transport in convection for the upper troposphere and stratosphere. The FAAM aircraft made a total of 25 flights in the region between 1°S and 14°N and 130° and 155°E. It was used to sample at altitudes below 8 km, with much of the time spent in the marine boundary layer. It measured a range of chemical species and sampled extensively within the region of main inflow into the strong west Pacific convection. The CAST team also made ground-based measurements of a number of species (including daily ozonesondes) at the Atmospheric Radiation Measurement Program site on Manus Island, Papua New Guinea (2.1°S, 147.4°E). This article presents an overview of the CAST project, focusing on the design and operation of the west Pacific experiment. It additionally discusses some new developments in CAST, including flights of new instruments on board the Global Hawk in February–March 2015.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-01
    Description: The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) explored the impact of diabatic processes on disturbances of the jet stream and their influence on downstream high-impact weather through the deployment of four research aircraft, each with a sophisticated set of remote sensing and in situ instruments, and coordinated with a suite of ground-based measurements. A total of 49 research flights were performed, including, for the first time, coordinated flights of the four aircraft: the German High Altitude and Long Range Research Aircraft (HALO), the Deutsches Zentrum für Luft- und Raumfahrt (DLR) Dassault Falcon 20, the French Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) Falcon 20, and the British Facility for Airborne Atmospheric Measurements (FAAM) BAe 146. The observation period from 17 September to 22 October 2016 with frequently occurring extratropical and tropical cyclones was ideal for investigating midlatitude weather over the North Atlantic. NAWDEX featured three sequences of upstream triggers of waveguide disturbances, as well as their dynamic interaction with the jet stream, subsequent development, and eventual downstream weather impact on Europe. Examples are presented to highlight the wealth of phenomena that were sampled, the comprehensive coverage, and the multifaceted nature of the measurements. This unique dataset forms the basis for future case studies and detailed evaluations of weather and climate predictions to improve our understanding of diabatic influences on Rossby waves and the downstream impacts of weather systems affecting Europe.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-01
    Description: The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5°N, 144.8°E) during January–February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15-km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry–climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High-accuracy, in situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the upper troposphere, where previous observations from balloonborne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January–February 2014. Together, CONTRAST, Airborne Tropical Tropopause Experiment (ATTREX), and Coordinated Airborne Studies in the Tropics (CAST), using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-08-16
    Description: A numerical formulation is provided for secondary ice production during fragmentation of freezing raindrops or drizzle. This is obtained by pooling laboratory observations from published studies and considering the physics of collisions. There are two modes of the scheme: fragmentation during spherical drop freezing (mode 1) and during collisions of supercooled raindrops with more massive ice (mode 2). The empirical scheme is for atmospheric models. Microphysical simulations with a parcel model of fast ascent (8 m s−1) between −10° and −20°C are validated against aircraft observations of tropical maritime deep convection. Ice enhancement by an order of magnitude is predicted from inclusion of raindrop-freezing fragmentation, as observed. The Hallett–Mossop (HM) process was active too. Both secondary ice mechanisms (HM and raindrop freezing) are accelerated by a positive feedback involving collisional raindrop freezing. An energy-based theory is proposed explaining the laboratory observations of mode 1, both of approximate proportionality between drop size and fragment numbers and of their thermal peak. To illustrate the behavior of the scheme in both modes, the glaciation of idealized monodisperse populations of drops is elucidated with an analytical zero-dimensional (0D) theory treating the freezing in drop–ice collisions by a positive feedback of fragmentation. When drops are too few or too small (≪1 mm), especially at temperatures far from −15°C (mode 1), there is little raindrop-freezing fragmentation on realistic time scales of natural clouds, but otherwise, high ice enhancement (IE) ratios of up to 100–1000 are possible. Theoretical formulas for the glaciation time of such drop populations, and their maximum and initial growth rates of IE ratio, are proposed.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-04-01
    Description: Billed as the creation and provision of timely, tailored information for decision-making at all levels of society, climate services have garnered a great deal of attention in recent years. Despite this growing attention, strategies to design, diagnose, and evaluate climate services remain relatively ad hoc—and while a general sense of what constitutes “good practice” in climate service provision is developing in some areas, and with respect to certain aspects of service provision, a great deal about the effective implementation of such service remains unknown. This article reviews a sample of more than 100 climate service activities as a means to generate a snapshot of the state of the field in 2012. It is found that a “typical climate service” at this time was provided by a national meteorological service operating on a national scale to provide seasonal climate information to agricultural decision-makers online. The analysis shows that the field of climate services is still emerging—marked by contested definitions, an emphasis on capacity development, uneven progress toward coproduction, uncertain funding streams, and a lack of evaluation activities—and stands as a signpost against which the development of the field can be measured. The article also reflects on the relative contribution of this sort of sampling activity in informing “good practice” and offers suggestions for how both sampling and case study efforts can be better designed to increase the potential for learning. This article concludes with some observations on the relative contribution that broad-based analyses can play in informing this emerging field.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-08-01
    Description: An error in a recent analysis of the sensitivity of retrievals of Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) particulate optical properties to errors in various input parameters is described. This error was in the specification of an intermediate variable that was used to write a general equation for the sensitivities to errors in either the renormalization (calibration) factor or in the lidar ratio used in the retrieval, or both. The result of this incorrect substitution (an additional multiplicative factor to the exponent of the particulate transmittance) was then copied to some intermediate equations; the corrected versions of which are presented here. Fortunately, however, all of the final equations for the specific cases of renormalization and lidar ratio errors are correct, as are all of the figures and approximations, because these were derived directly from equations for the specific errors and not from the equation for the general case. All of the other sections, including the uncertainty analyses and the analyses of sensitivities to low signal-to-noise ratios and errors in constrained retrievals, and the presentations of errors and uncertainties in simulated and actual data are unaffected.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-01
    Description: The 22 May 2014 Duanesburg, New York, supercell produced an enhanced Fujita scale category 3 (EF3) tornado and 10-cm-diameter hail. The synoptic setup for the event was ambiguous compared to other documented cases of Northeast tornadoes. Mesoscale inhomogeneities due to terrain and baroclinic boundaries played a key role in the evolution and severity of the storm. The storm initiated at the intersection of an outflow boundary and a north–south-oriented baroclinic boundary. The mesocyclone was able to sustain itself as a result of sufficiently large amounts of low-level streamwise vorticity near the boundary despite subcritical values of 0–6-km vertical wind shear. Differential heating across the north–south-oriented boundary strengthened the pressure gradient across it. Strengthening ageostrophic flow across the boundary induced greater upslope flow along the southeastern slope of the Adirondack Mountains and induced terrain channeling up the Mohawk River valley. The channeling led to a maximum in moisture flux convergence and instability in the Mohawk valley. As the supercell moved into the Mohawk valley, radar and lightning data indicated a rapid intensification of the storm. Cold temperatures aloft due to the presence of an elevated mixed layer (EML) coincided with the surface instability to yield a local environment in the Mohawk valley favorable for extremely large hail. As the storm crossed the boundary, large values of 0–1-km wind shear, streamwise vorticity, and low lifting condensation levels combined to create a local environment favorable for tornadogenesis.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-12-11
    Description: A midlatitude hail storm was simulated using a new version of the spectral bin microphysics Hebrew University Cloud Model (HUCM) with a detailed description of time-dependent melting and freezing. In addition to size distributions of drops, plate-, columnar-, and branch-type ice crystals, snow, graupel, and hail, new distributions for freezing drops as well as for liquid water mass within precipitating ice particles were implemented to describe time-dependent freezing and wet growth of hail, graupel, and freezing drops. Simulations carried out using different aerosol loadings show that an increase in aerosol loading leads to a decrease in the total mass of hail but also to a substantial increase in the maximum size of hailstones. Cumulative rain strongly increases with an increase in aerosol concentration from 100 to about 1000 cm−3. At higher cloud condensation nuclei (CCN) concentrations, the sensitivity of hailstones’ size and surface precipitation to aerosols decreases. The physical mechanism of these effects was analyzed. It was shown that the change in aerosol concentration leads to a change in the major mechanisms of hail formation and growth. The main effect of the increase in the aerosol concentration is the increase in the supercooled cloud water content. Accordingly, at high aerosol concentration, the hail grows largely by accretion of cloud droplets in the course of recycling in the cloud updraft zone. The main mechanism of hail formation in the case of low aerosol concentration is freezing of raindrops.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-11
    Description: This paper proposes that the maximum entropy principle can be used for determining the drop size distribution of hydrometeors. The maximum entropy principle can be applied to any physical systems with many degrees of freedom in order to determine a distribution of a variable when the following are known: 1) the restriction variable that leads to a homogeneous distribution without constraint and 2) a set of integrals weighted by the distribution, such as mean and variance, that constrain the system. The principle simply seeks a distribution that gives the maximum possible number of partitions among all the possible states. A continuous limit can be taken by assuming a constant bin size for the restriction variable. This paper suggests that the drop mass is the most likely restriction variable, and the laws of conservation of total bulk mass and of total vertical drop mass flux are two of the most likely physical constraints to a hydrometeor drop size distribution. Under this consideration, the distribution is most likely constrained by the total bulk mass when an ensemble of drops under the coalescence–breakup process is confined inside a closed box. Alternatively, for an artificial rain produced from the top of a high ceiling under a constant mass flux of water fall, the total drop mass flux is the most likely constraint to the drop size distribution. Preliminary analysis of already-published data is not inconsistent with the above hypotheses, although the results are rather inconclusive. Data in the large drop size limit are required in order to reach a more definite conclusion.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-11-10
    Description: The number of ice fragments generated by breakup of large graupel in collisions with small graupel fluctuates randomly owing to fluctuations in relative sizes and densities of colliding graupel particles and the stochastic nature of fracture propagation. This paper investigates the impact of the stochasticity of breakup on ice multiplication. When both the rate of generation of primary ice and the initial number concentration of ice crystals are low, the system most likely loses all the initial ice and graupel owing to a lack of sustaining sources. Even randomness does not change this mean evolution of the system in its phase space. However, a fluctuation of ice breakup number gives a small but finite chance that substantial ice crystal fragments are generated by breakup of large graupel. That, in turn, generates more large graupel. This multiplicative process due to fluctuations potentially leads to a small but finite chance of explosive growth of ice number. A rigorous stochastic analysis demonstrates this point quantitatively. The randomness considered here belongs to a particular category called “multiplicative” noise, because the noise amplitude is proportional to a given physical state. To contrast the multiplicative-noise nature of ice breakup with a standard “additive” noise process, fluctuation of the primary ice generation rate is also considered as an example of the latter. These processes are examined by taking the Fokker–Planck equation that explicitly describes the evolution of the probability distribution with time. As an important conclusion, stability in the phase space of the cloud microphysical system of breakup in ice–ice collisions is substantially altered by the multiplicative noise.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...