ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (250)
  • Medicine, Diseases  (30)
  • American Association for the Advancement of Science (AAAS)  (280)
  • American Meteorological Society
  • American Society of Hematology
  • Oxford University Press
  • 2015-2019  (280)
  • 1955-1959
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (280)
  • American Meteorological Society
  • American Society of Hematology
  • Oxford University Press
  • Nature Publishing Group (NPG)  (273)
Years
Year
  • 1
    Publication Date: 2015-05-16
    Description: The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kapheim, Karen M -- Pan, Hailin -- Li, Cai -- Salzberg, Steven L -- Puiu, Daniela -- Magoc, Tanja -- Robertson, Hugh M -- Hudson, Matthew E -- Venkat, Aarti -- Fischman, Brielle J -- Hernandez, Alvaro -- Yandell, Mark -- Ence, Daniel -- Holt, Carson -- Yocum, George D -- Kemp, William P -- Bosch, Jordi -- Waterhouse, Robert M -- Zdobnov, Evgeny M -- Stolle, Eckart -- Kraus, F Bernhard -- Helbing, Sophie -- Moritz, Robin F A -- Glastad, Karl M -- Hunt, Brendan G -- Goodisman, Michael A D -- Hauser, Frank -- Grimmelikhuijzen, Cornelis J P -- Pinheiro, Daniel Guariz -- Nunes, Francis Morais Franco -- Soares, Michelle Prioli Miranda -- Tanaka, Erica Donato -- Simoes, Zila Luz Paulino -- Hartfelder, Klaus -- Evans, Jay D -- Barribeau, Seth M -- Johnson, Reed M -- Massey, Jonathan H -- Southey, Bruce R -- Hasselmann, Martin -- Hamacher, Daniel -- Biewer, Matthias -- Kent, Clement F -- Zayed, Amro -- Blatti, Charles 3rd -- Sinha, Saurabh -- Johnston, J Spencer -- Hanrahan, Shawn J -- Kocher, Sarah D -- Wang, Jun -- Robinson, Gene E -- Zhang, Guojie -- DP1 OD006416/OD/NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Jun 5;348(6239):1139-43. doi: 10.1126/science.aaa4788. Epub 2015 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Biology, Utah State University, Logan, UT 84322, USA. karen.kapheim@usu.edu wangj@genomics.org.cn generobi@illinois.edu zhanggj@genomics.org.cn. ; China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China. ; China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, 1350, Denmark. ; Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA. Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. ; Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. ; Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. ; Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. ; Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. ; Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Program in Ecology and Evolutionary Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Biology, Hobart and William Smith Colleges, Geneva, NY 14456, USA. ; Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. ; Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA. USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA. ; Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA. ; U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) Red River Valley Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA. ; Center for Ecological Research and Forestry Applications (CREAF), Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain. ; Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland. ; Institute of Biology, Department Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, D-06099 Halle (Saale), Germany. Queen Mary University of London, School of Biological and Chemical Sciences Organismal Biology Research Group, London E1 4NS, UK. ; Institute of Biology, Department Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, D-06099 Halle (Saale), Germany. Department of Laboratory Medicine, University Hospital Halle, Ernst Grube Strasse 40, D-06120 Halle (Saale), Germany. ; Institute of Biology, Department Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, D-06099 Halle (Saale), Germany. ; Institute of Biology, Department Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, D-06099 Halle (Saale), Germany. German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, 04103 Leipzig, Germany. ; School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA. ; Department of Entomology, University of Georgia, Griffin, GA 30223, USA. ; Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark. ; Departamento de Biologia, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, SP, Brazil. Departamento de Tecnologia, Faculdade de Ciencias Agrarias e Veterinarias, Universidade Estadual Paulista (UNESP), 14884-900 Jaboticabal, SP, Brazil. ; Departamento de Genetica e Evolucao, Centro de Ciencias Biologicas e da Saude, Universidade Federal de Sao Carlos, 13565-905 Sao Carlos, SP, Brazil. ; Departamento de Biologia, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, SP, Brazil. ; Departamento de Genetica, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, 14049-900 Ribeirao Preto, SP, Brazil. ; Departamento de Biologia Celular e Molecular e Bioagentes Patogenicos, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, 14049-900 Ribeirao Preto, SP, Brazil. ; USDA-ARS Bee Research Lab, Beltsville, MD 20705 USA. ; Department of Biology, East Carolina University, Greenville, NC 27858, USA. ; Department of Entomology, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH 44691, USA. ; Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA. ; Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA. ; Department of Population Genomics, Institute of Animal Husbandry and Animal Breeding, University of Hohenheim, Germany. ; Department of Biology, York University, Toronto, ON M3J 1P3, Canada. Janelia Farm Research Campus, Howard Hughes Medical Institue, Ashburn, VA 20147, USA. ; Department of Biology, York University, Toronto, ON M3J 1P3, Canada. ; Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. ; Department of Entomology, Texas A&M University, College Station, TX 77843, USA. ; Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA. ; China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China. Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Medicine, University of Hong Kong, Hong Kong. karen.kapheim@usu.edu wangj@genomics.org.cn generobi@illinois.edu zhanggj@genomics.org.cn. ; Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Center for Advanced Study Professor in Entomology and Neuroscience, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. karen.kapheim@usu.edu wangj@genomics.org.cn generobi@illinois.edu zhanggj@genomics.org.cn. ; China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark. karen.kapheim@usu.edu wangj@genomics.org.cn generobi@illinois.edu zhanggj@genomics.org.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25977371" target="_blank"〉PubMed〈/a〉
    Keywords: Amino-Acid N-Acetyltransferase ; Animals ; Bees/classification/*genetics ; DNA Transposable Elements ; *Evolution, Molecular ; Gene Expression Regulation ; Gene Regulatory Networks ; *Genetic Drift ; Genome, Insect/genetics ; Phylogeny ; Selection, Genetic ; *Social Behavior ; Transcription Factors/chemistry/genetics ; *Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-11
    Description: Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor’s molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment.
    Keywords: Medicine, Diseases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-15
    Description: Human inborn errors of immunity mediated by the cytokines interleukin-17A and interleukin-17F (IL-17A/F) underlie mucocutaneous candidiasis, whereas inborn errors of interferon-gamma (IFN-gamma) immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORgamma and RORgammaT isoforms resulted in the absence of IL-17A/F-producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORgamma- and RORgammaT-deficient individuals also displayed an impaired IFN-gamma response to Mycobacterium. This principally reflected profoundly defective IFN-gamma production by circulating gammadelta T cells and CD4(+)CCR6(+)CXCR3(+) alphabeta T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORgamma, RORgammaT, or both.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668938/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668938/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada, Satoshi -- Markle, Janet G -- Deenick, Elissa K -- Mele, Federico -- Averbuch, Dina -- Lagos, Macarena -- Alzahrani, Mohammed -- Al-Muhsen, Saleh -- Halwani, Rabih -- Ma, Cindy S -- Wong, Natalie -- Soudais, Claire -- Henderson, Lauren A -- Marzouqa, Hiyam -- Shamma, Jamal -- Gonzalez, Marcela -- Martinez-Barricarte, Ruben -- Okada, Chizuru -- Avery, Danielle T -- Latorre, Daniela -- Deswarte, Caroline -- Jabot-Hanin, Fabienne -- Torrado, Egidio -- Fountain, Jeffrey -- Belkadi, Aziz -- Itan, Yuval -- Boisson, Bertrand -- Migaud, Melanie -- Arlehamn, Cecilia S Lindestam -- Sette, Alessandro -- Breton, Sylvain -- McCluskey, James -- Rossjohn, Jamie -- de Villartay, Jean-Pierre -- Moshous, Despina -- Hambleton, Sophie -- Latour, Sylvain -- Arkwright, Peter D -- Picard, Capucine -- Lantz, Olivier -- Engelhard, Dan -- Kobayashi, Masao -- Abel, Laurent -- Cooper, Andrea M -- Notarangelo, Luigi D -- Boisson-Dupuis, Stephanie -- Puel, Anne -- Sallusto, Federica -- Bustamante, Jacinta -- Tangye, Stuart G -- Casanova, Jean-Laurent -- 8UL1TR000043/TR/NCATS NIH HHS/ -- HHSN272200900044C/AI/NIAID NIH HHS/ -- HHSN272200900044C/PHS HHS/ -- R37 AI095983/AI/NIAID NIH HHS/ -- R37AI095983/AI/NIAID NIH HHS/ -- T32 AI007512/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):606-13. doi: 10.1126/science.aaa4282. Epub 2015 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. jmarkle@rockefeller.edu jean-laurent.casanova@rockefeller.edu. ; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia. ; Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. ; Department of Pediatrics, Hadassah University Hospital, Jerusalem, Israel. ; Department of Immunology, School of Medicine, Universidad de Valparaiso, Santiago, Chile. Department of Pediatrics, Padre Hurtado Hospital and Clinica Alemana, Santiago, Chile. ; Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. ; Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. Department of Pediatrics, Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia. ; Department of Pediatrics, Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia. ; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. ; Institut Curie, INSERM U932, Paris, France. ; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA. ; Caritas Baby Hospital, Post Office Box 11535, Jerusalem, Israel. ; Department of Immunology, School of Medicine, Universidad de Valparaiso, Santiago, Chile. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. ; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. ; Trudeau Institute, Saranac Lake, NY 12983, USA. ; La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. ; Department of Radiology, Assistance Publique-Hopitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France. ; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia. ; Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia. Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia. Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK. ; Laboratoire Dynamique du Genome et Systeme Immunitaire, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. ; Laboratoire Dynamique du Genome et Systeme Immunitaire, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. ; Institute of Cellular Medicine, Newcastle University and Great North Children's Hospital, Newcastle upon Tyne NE4 6BE, UK. ; Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. ; Department of Paediatric Allergy Immunology, University of Manchester, Royal Manchester Children's Hospital, Manchester, UK. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. ; Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. ; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA. Manton Center for Orphan Disease Research, Children's Hospital, Boston, MA 02115, USA. ; Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. Center of Medical Immunology, Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. Howard Hughes Medical Institute, New York, NY 10065, USA. jmarkle@rockefeller.edu jean-laurent.casanova@rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26160376" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Candida albicans/*immunology ; Candidiasis, Chronic Mucocutaneous/complications/*genetics/immunology ; Cattle ; Child ; Child, Preschool ; DNA Mutational Analysis ; Exome/genetics ; Female ; Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor ; Humans ; Immunity/*genetics ; Interferon-gamma/immunology ; Interleukin-17/immunology ; Mice ; Mutation ; Mycobacterium bovis/immunology/isolation & purification ; Mycobacterium tuberculosis/immunology/isolation & purification ; Nuclear Receptor Subfamily 1, Group F, Member 3/*genetics ; Pedigree ; Receptors, Antigen, T-Cell, alpha-beta/genetics/immunology ; Receptors, Antigen, T-Cell, gamma-delta/genetics/immunology ; Severe Combined Immunodeficiency/*genetics ; T-Lymphocytes/immunology ; Thymus Gland/abnormalities/immunology ; Tuberculosis, Bovine/*genetics/immunology ; Tuberculosis, Pulmonary/*genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-08-04
    Description: 5'-Adenosine monophosphate–activated protein kinase (AMPK) is a master regulator of energy homeostasis in eukaryotes. Despite three decades of investigation, the biological roles of AMPK and its potential as a drug target remain incompletely understood, largely because of a lack of optimized pharmacological tools. We developed MK-8722, a potent, direct, allosteric activator of all 12 mammalian AMPK complexes. In rodents and rhesus monkeys, MK-8722–mediated AMPK activation in skeletal muscle induced robust, durable, insulin-independent glucose uptake and glycogen synthesis, with resultant improvements in glycemia and no evidence of hypoglycemia. These effects translated across species, including diabetic rhesus monkeys, but manifested with concomitant cardiac hypertrophy and increased cardiac glycogen without apparent functional sequelae.
    Keywords: Medicine, Diseases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-01
    Description: The actin cross-linking domain (ACD) is an actin-specific toxin produced by several pathogens, including life-threatening spp. of Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Actin cross-linking by ACD is thought to lead to slow cytoskeleton failure owing to a gradual sequestration of actin in the form of nonfunctional oligomers. Here, we found that ACD converted cytoplasmic actin into highly toxic oligomers that potently "poisoned" the ability of major actin assembly proteins, formins, to sustain actin polymerization. Thus, ACD can target the most abundant cellular protein by using actin oligomers as secondary toxins to efficiently subvert cellular functions of actin while functioning at very low doses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648357/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648357/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heisler, David B -- Kudryashova, Elena -- Grinevich, Dmitry O -- Suarez, Cristian -- Winkelman, Jonathan D -- Birukov, Konstantin G -- Kotha, Sainath R -- Parinandi, Narasimham L -- Vavylonis, Dimitrios -- Kovar, David R -- Kudryashov, Dmitri S -- R01 GM079265/GM/NIGMS NIH HHS/ -- R01 GM098430/GM/NIGMS NIH HHS/ -- R01 GM114666/GM/NIGMS NIH HHS/ -- R01 HL076259/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 31;349(6247):535-9. doi: 10.1126/science.aab4090.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. kudryashov.1@osu.edu kudryashova.1@osu.edu. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. ; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA. ; Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA. ; Lipid Signaling and Lipidomics Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA. ; Department of Physics, Lehigh University, Bethlehem, PA 18015, USA. ; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA. Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA. kudryashov.1@osu.edu kudryashova.1@osu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26228148" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Animals ; Antigens, Bacterial/*chemistry/genetics/*toxicity ; Bacterial Toxins/*chemistry/genetics/*toxicity ; Cell Line ; Fetal Proteins/*antagonists & inhibitors ; Intestinal Mucosa/drug effects/metabolism ; Microfilament Proteins/*antagonists & inhibitors ; Nuclear Proteins/*antagonists & inhibitors ; Polymerization/drug effects ; Protein Structure, Tertiary ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-20
    Description: A major goal of HIV-1 vaccine research is the design of immunogens capable of inducing broadly neutralizing antibodies (bnAbs) that bind to the viral envelope glycoprotein (Env). Poor binding of Env to unmutated precursors of bnAbs, including those of the VRC01 class, appears to be a major problem for bnAb induction. We engineered an immunogen that binds to VRC01-class bnAb precursors and immunized knock-in mice expressing germline-reverted VRC01 heavy chains. Induced antibodies showed characteristics of VRC01-class bnAbs, including a short CDRL3 (light-chain complementarity-determining region 3) and mutations that favored binding to near-native HIV-1 gp120 constructs. In contrast, native-like immunogens failed to activate VRC01-class precursors. The results suggest that rational epitope design can prime rare B cell precursors for affinity maturation to desired targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669217/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669217/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jardine, Joseph G -- Ota, Takayuki -- Sok, Devin -- Pauthner, Matthias -- Kulp, Daniel W -- Kalyuzhniy, Oleksandr -- Skog, Patrick D -- Thinnes, Theresa C -- Bhullar, Deepika -- Briney, Bryan -- Menis, Sergey -- Jones, Meaghan -- Kubitz, Mike -- Spencer, Skye -- Adachi, Yumiko -- Burton, Dennis R -- Schief, William R -- Nemazee, David -- 1UM1AI100663/AI/NIAID NIH HHS/ -- P01 AI094419/AI/NIAID NIH HHS/ -- P01AI081625/AI/NIAID NIH HHS/ -- R01 AI073148/AI/NIAID NIH HHS/ -- R01 AI081625/AI/NIAID NIH HHS/ -- R01-AI073148/AI/NIAID NIH HHS/ -- T32 AI007244/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 10;349(6244):156-61. doi: 10.1126/science.aac5894. Epub 2015 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC), The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. nemazee@scripps.edu schief@scripps.edu burton@scripps.edu. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. nemazee@scripps.edu schief@scripps.edu burton@scripps.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089355" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/*immunology ; Animals ; Antibodies, Monoclonal/biosynthesis/*immunology ; Antibodies, Neutralizing/biosynthesis/*immunology ; Antibody Affinity ; B-Lymphocytes/immunology ; Complementarity Determining Regions/genetics/immunology ; Epitopes/genetics/immunology ; HIV Antibodies/biosynthesis/*immunology ; HIV Envelope Protein gp120/genetics/*immunology ; HIV Infections/*prevention & control ; HIV-1/*immunology ; Immunoglobulin Heavy Chains/genetics/immunology ; Mice ; Mice, Knockout
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-03-12
    Description: Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zanoni, Paolo -- Khetarpal, Sumeet A -- Larach, Daniel B -- Hancock-Cerutti, William F -- Millar, John S -- Cuchel, Marina -- DerOhannessian, Stephanie -- Kontush, Anatol -- Surendran, Praveen -- Saleheen, Danish -- Trompet, Stella -- Jukema, J Wouter -- De Craen, Anton -- Deloukas, Panos -- Sattar, Naveed -- Ford, Ian -- Packard, Chris -- Majumder, Abdullah al Shafi -- Alam, Dewan S -- Di Angelantonio, Emanuele -- Abecasis, Goncalo -- Chowdhury, Rajiv -- Erdmann, Jeanette -- Nordestgaard, Borge G -- Nielsen, Sune F -- Tybjaerg-Hansen, Anne -- Schmidt, Ruth Frikke -- Kuulasmaa, Kari -- Liu, Dajiang J -- Perola, Markus -- Blankenberg, Stefan -- Salomaa, Veikko -- Mannisto, Satu -- Amouyel, Philippe -- Arveiler, Dominique -- Ferrieres, Jean -- Muller-Nurasyid, Martina -- Ferrario, Marco -- Kee, Frank -- Willer, Cristen J -- Samani, Nilesh -- Schunkert, Heribert -- Butterworth, Adam S -- Howson, Joanna M M -- Peloso, Gina M -- Stitziel, Nathan O -- Danesh, John -- Kathiresan, Sekar -- Rader, Daniel J -- CHD Exome+ Consortium -- CARDIoGRAM Exome Consortium -- Global Lipids Genetics Consortium -- R01 DK089256/DK/NIDDK NIH HHS/ -- R01 HL117078/HL/NHLBI NIH HHS/ -- TL1 RR024133/RR/NCRR NIH HHS/ -- TL1R000138/PHS HHS/ -- TL1RR024133/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1166-71. doi: 10.1126/science.aad3517.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. INSERM UMR 1166 ICAN, Universite Pierre et Marie Curie Paris 6, Hopital de la Pitie, Paris, France. ; INSERM UMR 1166 ICAN, Universite Pierre et Marie Curie Paris 6, Hopital de la Pitie, Paris, France. ; Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. ; Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Centre for Non-Communicable Diseases, Karachi, Pakistan. ; Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands. Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands. ; Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands. The Interuniversity Cardiology Institute of the Netherlands, Utrecht, Netherlands. ; Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands. ; Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK. ; Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK. ; Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK. ; Glasgow Clinical Research Facility, Western Infirmary, Glasgow, UK. ; National Institute of Cardiovascular Diseases, Sher-e-Bangla Nagar, Dhaka, Bangladesh. ; International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh. ; Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA. ; Institute for Integrative and Experimental Genomics, University of Lubeck, Lubeck 23562, Germany. ; Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark. ; Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark. ; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark. ; Department of Health, National Institute for Health and Welfare, Helsinki, Finland. ; Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA. ; Department of Health, National Institute for Health and Welfare, Helsinki, Finland. Institute of Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland. ; Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany. University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ; Department of Epidemiology and Public Health, Institut Pasteur de Lille, Lille, France. ; Department of Epidemiology and Public Health, University of Strasbourg, Strasbourg, France. ; Department of Epidemiology, Toulouse University-CHU Toulouse, Toulouse, France. ; Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen-German Research Center for Environmental Health, Neuherberg, Germany. Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany. ; Research Centre in Epidemiology and Preventive Medicine, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy. ; UKCRC Centre of Excellence for Public Health, Queens University, Belfast, Northern Ireland. ; Department of Computational Medicine and Bioinformatics, Department of Human Genetics, and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA. ; Department of Cardiovascular Sciences, University of Leicester, Leicester, UK. National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Glenfield Hotel, Leicester, UK. ; Deutsches Herzzentrum Munchen, Technische Universitat Munchen, Munich, Germany. ; Broad Institute and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA. ; Department of Medicine, Division of Cardiology, Department of Genetics, and the McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK. ; Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. rader@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26965621" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Amino Acid Substitution ; Animals ; Cholesterol, HDL/*blood ; Coronary Disease/*blood/*genetics ; DNA Mutational Analysis ; Female ; Genetic Variation ; Heterozygote ; Homozygote ; Humans ; Leucine/genetics ; Male ; Mice ; Middle Aged ; Proline/genetics ; Protein Processing, Post-Translational ; Risk ; Scavenger Receptors, Class B/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-07-28
    Description: The genomes of cancers deficient in mismatch repair contain exceptionally high numbers of somatic mutations. In a proof-of-concept study, we previously showed that colorectal cancers with mismatch repair deficiency were sensitive to immune checkpoint blockade with antibodies to programmed death receptor–1 (PD-1). We have now expanded this study to evaluate the efficacy of PD-1 blockade in patients with advanced mismatch repair–deficient cancers across 12 different tumor types. Objective radiographic responses were observed in 53% of patients, and complete responses were achieved in 21% of patients. Responses were durable, with median progression-free survival and overall survival still not reached. Functional analysis in a responding patient demonstrated rapid in vivo expansion of neoantigen-specific T cell clones that were reactive to mutant neopeptides found in the tumor. These data support the hypothesis that the large proportion of mutant neoantigens in mismatch repair–deficient cancers make them sensitive to immune checkpoint blockade, regardless of the cancers’ tissue of origin.
    Keywords: Medicine, Diseases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-06-13
    Description: Agents that promote tissue regeneration could be beneficial in a variety of clinical settings, such as stimulating recovery of the hematopoietic system after bone marrow transplantation. Prostaglandin PGE2, a lipid signaling molecule that supports expansion of several types of tissue stem cells, is a candidate therapeutic target for promoting tissue regeneration in vivo. Here, we show that inhibition of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a prostaglandin-degrading enzyme, potentiates tissue regeneration in multiple organs in mice. In a chemical screen, we identify a small-molecule inhibitor of 15-PGDH (SW033291) that increases prostaglandin PGE2 levels in bone marrow and other tissues. SW033291 accelerates hematopoietic recovery in mice receiving a bone marrow transplant. The same compound also promotes tissue regeneration in mouse models of colon and liver injury. Tissues from 15-PGDH knockout mice demonstrate similar increased regenerative capacity. Thus, 15-PGDH inhibition may be a valuable therapeutic strategy for tissue regeneration in diverse clinical contexts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481126/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481126/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Yongyou -- Desai, Amar -- Yang, Sung Yeun -- Bae, Ki Beom -- Antczak, Monika I -- Fink, Stephen P -- Tiwari, Shruti -- Willis, Joseph E -- Williams, Noelle S -- Dawson, Dawn M -- Wald, David -- Chen, Wei-Dong -- Wang, Zhenghe -- Kasturi, Lakshmi -- Larusch, Gretchen A -- He, Lucy -- Cominelli, Fabio -- Di Martino, Luca -- Djuric, Zora -- Milne, Ginger L -- Chance, Mark -- Sanabria, Juan -- Dealwis, Chris -- Mikkola, Debra -- Naidoo, Jacinth -- Wei, Shuguang -- Tai, Hsin-Hsiung -- Gerson, Stanton L -- Ready, Joseph M -- Posner, Bruce -- Willson, James K V -- Markowitz, Sanford D -- 1P01CA95471-09/CA/NCI NIH HHS/ -- 5P30 CA142543-03/CA/NCI NIH HHS/ -- P01 CA095471/CA/NCI NIH HHS/ -- P30 CA043703/CA/NCI NIH HHS/ -- P30 CA142543/CA/NCI NIH HHS/ -- P30 DK020572/DK/NIDDK NIH HHS/ -- P30 DK097948/DK/NIDDK NIH HHS/ -- P50 CA130810/CA/NCI NIH HHS/ -- P50 CA150964/CA/NCI NIH HHS/ -- R01 CA127590/CA/NCI NIH HHS/ -- R25 CA148052/CA/NCI NIH HHS/ -- R25CA148052/CA/NCI NIH HHS/ -- U54 HL119810/HL/NHLBI NIH HHS/ -- U54HL119810/HL/NHLBI NIH HHS/ -- UL1 TR000439/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Jun 12;348(6240):aaa2340. doi: 10.1126/science.aaa2340.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. ; Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Gastroenterology, Haeundae Paik Hospital, Inje University, Busan 612896, South Korea. ; Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Surgery, Busan Paik Hospital, and Paik Institute of Clinical Research and Ocular Neovascular Research Center, Inje University, Busan, South Korea. ; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ; Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. Case Medical Center, University Hospitals of Cleveland, Cleveland, OH 44106, USA. ; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA. Case Medical Center, University Hospitals of Cleveland, Cleveland, OH 44106, USA. ; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA. ; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA. ; Department of Family Medicine, University of Michigan, Ann Arbor MI 48109, USA. ; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA. ; Proteomics Center, Case Western Reserve University, Cleveland, OH 44106, USA. ; Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA. Case Medical Center, University Hospitals of Cleveland, Cleveland, OH 44106, USA. ; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA. ; College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA. ; Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. Case Medical Center, University Hospitals of Cleveland, Cleveland, OH 44106, USA. sxm10@cwru.edu james.willson@utsouthwestern.edu slg5@cwru.edu joseph.ready@utsouthwestern.edu bruce.posner@utsouthwestern.edu. ; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. sxm10@cwru.edu james.willson@utsouthwestern.edu slg5@cwru.edu joseph.ready@utsouthwestern.edu bruce.posner@utsouthwestern.edu. ; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. sxm10@cwru.edu james.willson@utsouthwestern.edu slg5@cwru.edu joseph.ready@utsouthwestern.edu bruce.posner@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26068857" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Transplantation ; Colitis/enzymology/prevention & control ; Dinoprostone/metabolism ; Enzyme Inhibitors/chemistry/pharmacology ; Hematopoiesis/drug effects ; Hydroxyprostaglandin Dehydrogenases/antagonists & inhibitors/genetics/*physiology ; Liver Regeneration/drug effects ; Mice ; Mice, Knockout ; Prostaglandins/*metabolism ; Pyridines/chemistry/pharmacology ; Regeneration/drug effects/genetics/*physiology ; Thiophenes/chemistry/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-19
    Description: Prostate cancer is initially responsive to androgen deprivation, but the effectiveness of androgen receptor (AR) inhibitors in recurrent disease is variable. Biopsy of bone metastases is challenging; hence, sampling circulating tumor cells (CTCs) may reveal drug-resistance mechanisms. We established single-cell RNA-sequencing (RNA-Seq) profiles of 77 intact CTCs isolated from 13 patients (mean six CTCs per patient), by using microfluidic enrichment. Single CTCs from each individual display considerable heterogeneity, including expression of AR gene mutations and splicing variants. Retrospective analysis of CTCs from patients progressing under treatment with an AR inhibitor, compared with untreated cases, indicates activation of noncanonical Wnt signaling (P = 0.0064). Ectopic expression of Wnt5a in prostate cancer cells attenuates the antiproliferative effect of AR inhibition, whereas its suppression in drug-resistant cells restores partial sensitivity, a correlation also evident in an established mouse model. Thus, single-cell analysis of prostate CTCs reveals heterogeneity in signaling pathways that could contribute to treatment failure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyamoto, David T -- Zheng, Yu -- Wittner, Ben S -- Lee, Richard J -- Zhu, Huili -- Broderick, Katherine T -- Desai, Rushil -- Fox, Douglas B -- Brannigan, Brian W -- Trautwein, Julie -- Arora, Kshitij S -- Desai, Niyati -- Dahl, Douglas M -- Sequist, Lecia V -- Smith, Matthew R -- Kapur, Ravi -- Wu, Chin-Lee -- Shioda, Toshi -- Ramaswamy, Sridhar -- Ting, David T -- Toner, Mehmet -- Maheswaran, Shyamala -- Haber, Daniel A -- 2R01CA129933/CA/NCI NIH HHS/ -- EB008047/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Sep 18;349(6254):1351-6. doi: 10.1126/science.aab0917.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Urology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Center for Bioengineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. haber@helix.mgh.harvard.edu smaheswaran@mgh.harvard.edu. ; Massachusetts General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. haber@helix.mgh.harvard.edu smaheswaran@mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26383955" target="_blank"〉PubMed〈/a〉
    Keywords: Androgen Antagonists/pharmacology/*therapeutic use ; Animals ; Cell Line, Tumor ; Drug Resistance, Neoplasm/*genetics ; Humans ; Male ; Mice ; Neoplastic Cells, Circulating/drug effects/*metabolism ; Phenylthiohydantoin/*analogs & derivatives/pharmacology/therapeutic use ; Prostate/drug effects/metabolism/pathology ; Prostatic Neoplasms/*drug therapy/*pathology ; Proto-Oncogene Proteins/genetics/metabolism ; RNA Splicing ; Receptors, Androgen/*genetics ; Sequence Analysis, RNA/methods ; Signal Transduction ; Single-Cell Analysis/methods ; Transcriptome ; Wnt Proteins/genetics/*metabolism ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...