ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (691)
  • Astrophysics  (536)
  • 2015-2019  (784)
  • 1995-1999  (441)
  • 1980-1984  (2)
Collection
Years
Year
  • 1
    Publication Date: 2019-08-14
    Description: Establishing the abundance and physical properties of regolith and boulders on asteroids is crucial for understanding the formation and degradation mechanisms at work on their surfaces. Using images and thermal data from NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft, we show that asteroid (101955) Bennu's surface is globally rough, dense with boulders, and low in albedo. The number of boulders is surprising given Bennu's moderate thermal inertia, suggesting that simple models linking thermal inertia to particle size do not adequately capture the complexity relating these properties. At the same time, we find evidence for a wide range of particle sizes with distinct albedo characteristics. Our findings imply that ages of Bennu's surface particles span from the disruption of the asteroid's parent body (boulders) to recent in situ production (micrometre-scale particles).
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN67770 , Nature Astronomy (e-ISSN 2397-3366); 3; 341–351
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: This article provides supplemental information for a Letter reporting the rate of (BBH) coalescences inferred from 16 days of coincident Advanced LIGO observations surrounding the transient (GW) signal GW150914. In that work wereported various rate estimates whose 90% confidence intervals fell in the range 2600 Gpc(exp -3) yr(exp -1). Here we givedetails on our method and computations, including information about our search pipelines, a derivation of ourlikelihood function for the analysis, a description of the astrophysical search trigger distribution expected frommerging BBHs, details on our computational methods, a description of the effects and our model for calibrationuncertainty, and an analytic method for estimating our detector sensitivity, which is calibrated to our measurements.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN44086 , The Astrophysical Journal: Supplement Series (ISSN 0067-0049) (e-ISSN 1538-4365); 227; 2; 14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, is greater than 8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN44111 , SPIE Astronomical Telescopes + Instrumentation; Jun 26, 2016 - Jul 01, 2016; Edinburgh, Scotland; United Kingdom|Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray; 9905; 99051R
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-13
    Description: We use joint observations by the Swift X-ray Telescope (XRT) and the Fermi Large Area Telescope (LAT) of gamma-ray burst (GRB) afterglows to investigate the nature of the long-lived high-energy emission observed by Fermi LAT. Joint broadband spectral modeling of XRT and LAT data reveals that LAT nondetections of bright X-ray afterglows are consistent with a cooling break in the inferred electron synchrotron spectrum below the LAT and/or XRT energy ranges. Such a break is sufficient to suppress the high-energy emission so as to be below the LAT detection threshold. By contrast, LAT-detected bursts are best fit by a synchrotron spectrum with a cooling break that lies either between or above the XRT and LAT energy ranges. We speculate that the primary difference between GRBs with LAT afterglow detections and the nondetected population may be in the type of circumstellar environment in which these bursts occur, with late-time LAT detections preferentially selecting GRBs that occur in low wind-like circumburst density profiles. Furthermore, we find no evidence of high-energy emission in the LAT-detected population significantly in excess of the flux expected from the electron synchrotron spectrum fit to the observed X-ray emission. The lack of excess emission at high energies could be due to a shocked external medium in which the energy density in the magnetic field is stronger than or comparable to that of the relativistic electrons behind the shock, precluding the production of a dominant synchrotron self-Compton (SSC) component in the LAT energy range. Alternatively, the peak of the SSC emission could be beyond the 0.1100 GeV energy range considered for this analysis.
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN59161 , Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 863; 2; 138
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-10-23
    Description: The LiteBIRD mission will map polarized fluctuations in the cosmic microwave background (CMB) to search for the signature of gravitational waves from inflation, potentially opening a window on the Universe a fraction of a second after the Big Bang. CMB measurements from space give access to the largest angular scales and the full frequency range to constrain Galactic foregrounds, and LiteBIRD has been designed to take best advantage of the unique window of space. LiteBIRD will have a powerful ability to separate Galactic foreground emission from the CMB due to its 15 frequency bands spaced between 40 and 402 GHz and sensitive 100-mK bolometers. LiteBIRD will provide stringent control of systematic errors due to the benign thermal environment at the second Lagrange point, L2, 20-K rapidly rotating half-wave plates on each telescope, and the ability to crosscheck its results by measuring both the reionization and recombination peaks in the B-mode power spectrum. LiteBIRD would be the next step in the series of CMB space missions, COBE, WMAP, and Planck, each of which has given landmark scientific discoveries.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN74209 , Bulletin of the American Astronomical Society (e-ISSN 0002-7537); 51; 7; 286
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The very high energy (VHE; E great than 100 GeV) blazar Markarian 501 was observed between April 17 and May 5 (MJD 5493854956), 2009, as part of an extensive multi-wavelength campaign from radio to VHE. Strong VHE -ray activity was detected on May 1st with Whipple and VERITAS, when the flux (E greater than 400 GeV) increased to 10 times the pre-flare baseline flux (3.9 x 10(exp -11 ph cm(exp -2 S(exp -1), reaching five times the flux of the Crab Nebula. This coincided with a decrease in the optical polarization and a rotation of the polarization angle by 15deg. This VHE flare showed a fast flux variation with an increase of a factor approximately 4 in 25 min, and a falling time of approximately 50 min. We present the observations of the quiescent state previous to the flare and of the high state after the flare, focusing on the flux and spectral variability from Whipple, VERITAS, Fermi-LAT, RXTE, and Swift combined with optical and radio data.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN44061 , Astronomy & Astrophysics (ISSN 0004-6361) (e-ISSN 1432-0746); 594; A76
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We conduct a multi-wavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 Angstrom to 9157 Angstrom) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i = 36deg +/- 10deg, temperature T(sub 1) = (44+/-6) times 10 (exp 3)K at 1 light day from the black hole, and a temperature radius slope (T proportional to r (exp -alpha)) of alpha = 0.99 +/- 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/L(sub Edd) = 0.1.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN44055 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 835; 1; 65
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: eXTP is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism. Primary goals are the determination of the equation of state of matter at supra-nuclear density, the measurement of QED effects in highly magnetized star, and the study of accretion in the strong-field regime of gravity. Primary targets include isolated and binary neutron stars, strong magnetic field systems like magnetars, and stellar-mass and supermassive black holes. The mission carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0.5-30 keV (and beyond). Key elements of the payload are: the Spectroscopic Focusing Array (SFA) - a set of 11 X-ray optics for a total effective area of approx. 0.9 m(exp. 2) and 0.6 m(exp. 2) at 2 keV and 6 keV respectively, equipped with Silicon Drift Detectors offering less than 180 eV spectral resolution; the Large Area Detector (LAD) - a deployable set of 640 Silicon Drift Detectors, for a total effective area of approx. 3.4 m(exp. 2), between 6 and 10 keV, and spectral resolution better than 250 eV; the Polarimetry Focusing Array (PFA) - a set of 2 X-ray telescope, for a total effective area of 250 cm(exp. 2) at 2 keV, equipped with imaging gas pixel photoelectric polarimeters; the Wide Field Monitor (WFM) - a set of 3 coded mask wide field units, equipped with position-sensitive Silicon Drift Detectors, each covering a 90 degrees x 90 degrees field of view. The eXTP international consortium includes major institutions of the Chinese Academy of Sciences and Universities in China, as well as major institutions in several European countries and the United States. The predecessor of eXTP, the XTP mission concept, has been selected and funded as one of the so-called background missions in the Strategic Priority Space Science Program of the Chinese Academy of Sciences since 2011. The strong European participation has significantly enhanced the scientific capabilities of eXTP. The planned launch date of the mission is earlier than 2025.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN43898 , SPIE Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray Conference 2016; Jun 26, 2016; Edinburgh; United Kingdom|Proceedings of SPIE (ISSN 0277-786X) (e-ISSN 1996-756X); 9905; 99051Q
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-04
    Description: Active asteroids are those that show evidence of ongoing mass loss. We report repeated instances of particle ejection from the surface of (101955) Bennu, demonstrating that it is an active asteroid. The ejection events were imaged by the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and SecurityRegolith Explorer) spacecraft. For the three largest observed events, we estimated the ejected particle velocities and sizes, event times, source regions, and energies. We also determined the trajectories and photometric properties of several gravitationally bound particles that orbited temporarily in the Bennu environment. We consider multiple hypotheses for the mechanisms that lead to particle ejection for the largest events, including rotational disruption, electrostatic lofting, ice sublimation, phyllosilicate dehydration, meteoroid impacts, thermal stress fracturing, and secondary impacts.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN76455 , Science (ISSN 0036-8075) (e-ISSN 1095-9203); 366; 6470; eaay3544
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Mars Science Laboratory rover Curiosity has encountered a variety of sedimentary rocks in Gale crater with different grain sizes, diagenetic features, sedimentary structures, and varying degrees of resistance to erosion. Curiosity has drilled three rocks to date and has analyzed the mineralogy, chemical composition, and textures of the samples with the science payload. The drilled rocks are the Sheepbed mudstone at Yellowknife Bay on the plains of Gale crater (John Klein and Cumberland targets), the Dillinger sandstone at the Kimberley on the plains of Gale crater (Windjana target), and a sedimentary unit in the Pahrump Hills in the lowermost rocks at the base of Mt. Sharp (Confidence Hills target). CheMin is the Xray diffractometer on Curiosity, and its data are used to identify and determine the abundance of mineral phases. Secondary phases can tell us about aqueous alteration processes and, thus, can help to elucidate past aqueous environments. Here, we present the secondary mineralogy of the rocks drilled to date as seen by CheMin and discuss past aqueous environments in Gale crater, the potential cementing agents in each rock, and how amorphous materials may play a role in cementing the sediments.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-32841 , Lunar and Planetary Science Conference; Mar 16, 2015 - Mar 20, 2015; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...