ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (1,214)
  • Meteorology and Climatology  (641)
  • 2015-2019  (181)
  • 2010-2014  (312)
  • 1995-1999  (1,312)
  • 1950-1954  (50)
  • 1940-1944
Collection
Publisher
Years
Year
  • 1
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The effect of surface roughness on osteoblast proliferation, differentiation, and protein synthesis was examined. Human osteoblast-like cells (MG63) were cultured on titanium (Ti) disks that had been prepared by one of five different treatment regimens. All disks were pretreated with hydrofluoric acid-nitric acid and washed (PT). PT disks were also: washed, and then electropolished (EP); fine sandblasted, etched with HCl and H2SO4, and washed (FA); coarse sandblasted, etched with HCl and H2SO4, and washed (CA); or Ti plasma-sprayed (TPS). Standard tissue culture plastic was used as a control. Surface topography and profile were evaluated by brightfield and darkfield microscopy, cold field emission scanning electron microscopy, and laser confocal microscopy, while chemical composition was mapped using energy dispersion X-ray analysis and elemental distribution determined using Auger electron spectroscopy. The effect of surface roughness on the cells was evaluated by measuring cell number, [3H]thymidine incorporation into DNA, alkaline phosphatase specific activity, [3H]uridine incorporation into RNA, [3H]proline incorporation into collagenase digestible protein (CDP) and noncollagenase-digestible protein (NCP), and [35S]sulfate incorporation into proteoglycan.Based on surface analysis, the five different Ti surfaces were ranked in order of smoothest to roughest: EP, PT, FA, CA, and TPS. A TiO2 layer was found on all surfaces that ranged in thickness from 100 Å in the smoothest group to 300 Å in the roughest. When compared to confluent cultures of cells on plastic, the number of cells was reduced on the TPS surfaces and increased on the EP surfaces, while the number of cells on the other surfaces was equivalent to plastic. [3H]Thymidine incorporation was inversely related to surface roughness. Alkaline phosphatase specific activity in isolated cells was found to decrease with increasing surface roughness, except for those cells cultured on CA. In contrast, enzyme activity in the cell layer was only decreased in cultures grown on FA- and TPS-treated surfaces. A direct correlation between surface roughness and RNA and CDP production was found. Surface roughness had no apparent effect on NCP production. Proteoglycan synthesis by the cells was inhibited on all the surfaces studied, with the largest inhibition observed in the CA and EP groups. These results demonstrate that surface roughness alters osteoblast proliferation, differentiation, and matrix production in vitro. The results also suggest that implant surface roughness may play a role in determining phenotypic expression of cells in vivo.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Titanium (Ti) surface roughness affects proliferation, differentiation, and matrix production of MG-63 osteoblast-like cells. Cytokines and growth factors produced in the milieu surrounding an implant may also be influenced by its surface, thereby modulating the healing process. This study examined the effect of surface roughness on the production of two factors known to have potent effects on bone, prostaglandin E2 (PGE2) and transforming growth factor β1 (TGF-β1). MG-63 cells were cultured on Ti disks of varying roughness. The surfaces were ranked from smoothest to roughest: electropolished (EP), pretreated with hydrofluoric acid-nitric acid (PT), fine sand-blasted, etched with HCl and H2SO4, and washed (EA), coarse sand-blasted, etched with HCl and H2SO4, and washed (CA), and Ti plasma-sprayed (TPS). Cells were cultured in 24-well polystyrene (plastic) dishes as controls and to determine when confluence was achieved. Media were collected and cell number determined 24 h postconfluence. PGE2 and TGF-β1 levels in the conditioned media were determined using commercial radioimmunoassay and enzyme-linked immunosorbent assay kits, respectively. There was an inverse relationship between cell number and Ti surface roughness. Total PGE2 content in the media of cultures grown on the three roughest surfaces (FA, CA, and TPS) was significantly increased 1.5-4.0 times over that found in media of cultures grown on plastic or smooth surfaces. When PGE2 production was expressed per cell number, CA and TPS cultures exhibited six- to eightfold increases compared to cultures on plastic and smooth surfaces. There was a direct relationship between TGF-β1 production and surface roughness, both in terms of total TGF-β1 per culture and when normalized for cell number. TGF-β1 production on rough surfaces (CA and TPS) was three to five times higher than on plastic. These studies indicate that substrate surface roughness affects cytokine and growth factor production by MG-63 cells, suggesting that surface roughness may modulate the activity of cells interacting with an implant, and thereby affect tissue healing and implant success. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0021-9304
    Keywords: implant ; titanium ; osteoblasts ; surface roughness ; 1α,25- (OH)2D3 ; differentiation ; local factor ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Surface roughness has been shown to affect differentiation and local factor production of MG63 osteoblast-like cells. This study examined whether surface roughness alters cellular response to circulating hormones such as 1α,25-(OH)2D3. Unalloyed titanium (Ti) disks were pretreated with HF/HNO3 (PT) and then were machined and acid-etched (MA). Ti disks also were sandblasted (SB), sandblasted and acid etched (CA), or plasma sprayed with Ti particles (PS). The surfaces, from smoothest to roughest, were: PT, MA, CA, SB, and PS. MG63 cells were cultured to confluence on standard tissue culture polystyrene (plastic) or the Ti surfaces and then treated for 24 h with either 10-8M or 10-7M 1α,25-(OH)2D3 or vehicle (control). Cellular response was measured by assaying cell number, cell layer alkaline phosphatase specific-activity, and the production of osteocalcin, latent (L) TGFβ, and PGE2. Alkaline phosphatase activity was affected by surface roughness; as the surface became rougher, the cells showed a significant increase in alkaline phosphatase activity. Addition of 1α,25-(OH)2D3 to the cultures caused a dose-dependent stimulation of alkaline phosphatase activity that was synergistic with the effect caused by surface roughness alone. 1α,25-(OH)2D3 also caused a synergistic increase in osteocalcin production as well as local factor (LTGFβ and PGE2) production on the rougher CA, SB, and PS surfaces, but it had no effect on the production on smooth surfaces. The inhibitory effect of surface roughness on cell number was not affected by 1α,25-(OH)2D3 except on the SB surface. 1α,25-(OH)2D3 decreased cell number, increased alkaline phosphatase activity and osteocalcin production, and had no effect on LTGFβ or PGE2 production by MG63 cells grown on tissue culture polystyrene. These data suggest that bone cell response to systemic hormones is modified by surface roughness and that surface roughness increases the responsiveness of MG63 cells to 1α,25-(OH)2D3. They also suggest that the endocrine system is actively involved in normal bone healing around implants. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 39, 77-85, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9304
    Keywords: implant ; titanium ; osteoblasts ; prostaglandin ; indomethacin ; surface roughness ; 1α,25-(OH)2D3 ; differentiation ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Surface roughness affects proliferation, differentiation (alkaline phosphatase and osteocalcin), local factor production [transforming growth factor (TGFβ) and prostaglandin E2 (PGE2)], and response to 1,25-(OH)2D3 (1,25) of MG63 osteoblast-like cells. In this study, we examined whether the effect of surface roughness on MG63 cells is mediated by prostaglandins produced by the cells. Unalloyed titanium (Ti) disks were pretreated with HF/HNO3 (PT) and then machined and acid-etched (MA). Disks were also coarse grit-sandblasted (SB), coarse grit-sandblasted and acid-etched (CA), or plasma-sprayed with Ti particles (PS). The surfaces, from smoothest to roughest, were PT, MA, CA, SB, and PS. MG63 cells were cultured to confluence on the Ti disks in the presence or absence of 10-7M indomethacin (Indo), a specific inhibitor of cyclooxygenase activity, resulting in decreased prostaglandin production. When the cells reached confluence, cell number, cell layer alkaline phosphatase specific activity (ALPase), and osteocalcin (OC) and latent TGFβ (LTGFβ) production were determined. In addition, confluent cultures which had been grown in the absence of Indo were exposed to 10-7M 1,25, 10-7M Indo, or a combination of the two for 24 h. On the rougher surfaces, cell number was decreased and ALPase, OC, and LTGFβ were increased. When indomethacin was present throughout the culture period, the effect of surface roughness on cell number, OC, and LTGFβ was abolished. ALPase was reduced, but surface roughness-dependent effects were still observed. Addition of indomethacin to confluent cultures for 24 h had no effect on any of the parameters examined, with one exception: Cells cultured on MA surfaces exhibited a more differentiated phenotype. 1,25 increased all parameters examined on SB, CA, and PS surfaces. When indomethacin was added with 1,25, the 1,25-dependent effects on cell number and OC and LTGFβ production were abolished; however, ALPase was unaffected. This indicates that bone cell response to systemic hormones may be modified by implant surface roughness. This effect may be mediated, at least in part, by prostaglandins produced by the same cells. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 41, 489-496, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Although it is well accepted that implant success is dependent on various surface properties, little is known about the effect of surface roughness on cell metabolism or differentiation, or whether the effects vary with the maturational state of the cells interacting with the implant. In the current study, we examined the effect of titanium (Ti) surface roughness on chondrocyte proliferation, differentiation, and matrix synthesis using cells derived from known stages of endochondral development. Chondrocytes derived from the resting zone (RCs) and growth zone (GCs) of rat costochondral cartilage were cultured on Ti disks that were prepared as follows: HF-HNO3-treated and washed (PT); PT-treated and electropolished (EP); fine sand-blasted, HCl-H2SO4-etched, and washed (FA); coarse sand-blasted, HCl-H2SO4-etched, and washed (CA); or Ti plasma-sprayed (TPS). Based on surface analysis, the Ti surfaces were ranked from smoothest to roughest: EP, PT, FA, CA, and TPS. Cell proliferation was assessed by cell number and [3H]-thymidine incorporation, and RNA synthesis was assessed by [3H]-uridine incorporation. Differentiation was determined by alkaline phosphatase specific activity (AL-Pase). Matrix production was measured by [3H]-proline incorporation into collagenase-digestible (CDP) and noncollagenase-digestible (NCP) protein and by [35S]-sulfate incorporation into proteoglycan. GCs required two trypsinizations for complete removal from the culture disks; the number of cells released by the first trypsinization was generally decreased with increasing surface roughness while that released by the second trypsinization was increased. In RC cultures, cell number was similarly decreased on the rougher surfaces; only minimal numbers of RCs were released by a second trypsinization. [3H]-thymidine incorporation by RCs decreased with increasing surface roughness while that by GCs was increased. [3H]-Uridine incorporation by both GCs and RCs was greater on rough surfaces. Conversely, ALPase in the cell layer and isolated cells of both cell types was significantly decreased. GC CDP and NCP production was significantly decreased on rough surfaces while CDP production by RC cells was significantly decreased on smooth surfaces. [35S]-sulfate incorporation by RCs and GCs was decreased on all surfaces compared to tissue culture plastic. The results of this study indicate that surface roughness affects chondrocyte proliferation, differentiation, and matrix synthesis, and that this regulation is cell maturation dependent. © 1996 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Ozone changes and associated climate impacts in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations are analyzed over the historical (1960-2005) and future (2006-2100) period under four Representative Concentration Pathways (RCP). In contrast to CMIP3, where half of the models prescribed constant stratospheric ozone, CMIP5 models all consider past ozone depletion and future ozone recovery. Multimodel mean climatologies and long-term changes in total and tropospheric column ozone calculated from CMIP5 models with either interactive or prescribed ozone are in reasonable agreement with observations. However, some large deviations from observations exist for individual models with interactive chemistry, and these models are excluded in the projections. Stratospheric ozone projections forced with a single halogen, but four greenhouse gas (GHG) scenarios show largest differences in the northern midlatitudes and in the Arctic in spring (approximately 20 and 40 Dobson units (DU) by 2100, respectively). By 2050, these differences are much smaller and negligible over Antarctica in austral spring. Differences in future tropospheric column ozone are mainly caused by differences in methane concentrations and stratospheric input, leading to approximately 10DU increases compared to 2000 in RCP 8.5. Large variations in stratospheric ozone particularly in CMIP5 models with interactive chemistry drive correspondingly large variations in lower stratospheric temperature trends. The results also illustrate that future Southern Hemisphere summertime circulation changes are controlled by both the ozone recovery rate and the rate of GHG increases, emphasizing the importance of simulating and taking into account ozone forcings when examining future climate projections.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN9138 , Journal of Geophysical Research: Atmospheres; 118; 10; 5029–5060
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from fourteen chemistry-climate models. There is general agreement among the models at the broadest levels, showing column ozone decreasing at all latitudes from 1960 to around 2000, then increasing at all latitudes over the first half of the 21st century, and latitudinal variations in the rate of increase and date of return to historical values. In the second half of the century, ozone is projected to continue increasing, level off or even decrease depending on the latitude, resulting in variable dates of return to historical values at latitudes where column ozone has declined below those levels. Separation into partial column above and below 20 hPa reveals that these latitudinal differences are almost completely due to differences in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and returns to 1960 levels before the end of the century, although there is a spread among the models in dates that ozone returns to historical values. Using multiple linear regression, we find decreasing halogens and increasing greenhouse gases contribute almost equally to increases in the upper stratospheric ozone. In the tropical lower stratosphere an increase in tropical upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in all models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century and returns to 1960 levels.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Constraining how much and how fast the West Antarctic Ice Sheet (WAIS) will change in the coming decades has recently been identified as the highest priority in Antarctic research (National Academies, 2015). Here we review recent research on WAIS and outline further scientific objectives for the area now identified as the most likely to undergo near-term significant change: Thwaites Glacier and the adjacent Amundsen Sea. Multiple lines of evidence point to an ongoing rapid loss of ice in this region in response to changing atmospheric and oceanic conditions. Models of the ice sheets dynamic behavior indicate a potential for greatly accelerated ice loss as ocean-driven melting at the Thwaites Glacier grounding zone and nearby areas leads to thinning, faster flow, and retreat. A complete retreat of the Thwaites Glacier basin would raise global sea level by more than three meters by entraining ice from adjacent catchments. This scenario could occur over the next few centuries, and faster ice loss could occur through processes omitted from most ice flow models such as hydrofracture and ice cliff failure, which have been observed in recent rapid ice retreats elsewhere. Increased basal melt at the grounding zone and increased potential for hydrofracture due to enhanced surface melt could initiate a more rapid collapse of Thwaites Glacier within the next few decades.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN43567 , Global and Planetary Change (ISSN 0921-8181) (e-ISSN 1872-6364); 153; 16-34
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Crop models are essential tools for assessing the threat of climate change to local and global food production. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 degrees C to 32 degrees C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each degree C of further temperature increase and become more variable over space and time.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN31334 , Nature Climate Change (ISSN 1758-678X) (e-ISSN 1758-6798); 5; 143-147
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 2925-2933 
    ISSN: 0887-6266
    Keywords: ionic conductivity ; DC conductivity ; rigid-rod polymer ; depletion measurement ; X-ray scattering ; anisotropic ; polymer electrolyte ; polyelectrolyte ; conducting polymers ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The conductivity study results of lithium-doped sulfonated PBI, a conjugated rigid rod polymer, poly[(1,7-dihydrobenzo[1,2-d:4,5-d′]dimidazole-2,6-diyl)-2-(2-sulfo)-p-phenylene], derivatized with pendants of propane sulfonate Li+ ionomer are reported. The room-temperature DC four-probe conductivity parallel to the surface of cast films was as large as 8.3 × 10-3 S/cm. Similar measurements with an eight-probe configuration showed no difference between bulk and surface conductivity. The ionic nature of the conductivity was indicated by constant voltage depletion experiments and by secondary ion mass spectroscopy measurements of the residues near the electrodes. The DC two-probe conductivity measured transverse to the sample surface was three to four orders of magnitude smaller than longitudinal conductivity, while the AC two-probe conductivity was even less. Electron microscopy indicated that the films had a layered structure parallel to the surfaces. This structural anisotropy was confirmed by refractive index values obtained from wave-guide experiments and by wide angle X-ray scattering. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2925-2933, 1997
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...