ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cells, Cultured  (89)
  • American Association for the Advancement of Science (AAAS)  (89)
  • American Physical Society
  • Cell Press
  • 2020-2024
  • 2010-2014  (35)
  • 1980-1984  (54)
Collection
Publisher
Years
Year
  • 21
    Publication Date: 2010-09-04
    Description: Leukotriene A(4) hydrolase (LTA(4)H) is a proinflammatory enzyme that generates the inflammatory mediator leukotriene B(4) (LTB(4)). LTA(4)H also possesses aminopeptidase activity with unknown substrate and physiological importance; we identified the neutrophil chemoattractant proline-glycine-proline (PGP) as this physiological substrate. PGP is a biomarker for chronic obstructive pulmonary disease (COPD) and is implicated in neutrophil persistence in the lung. In acute neutrophil-driven inflammation, PGP was degraded by LTA(4)H, which facilitated the resolution of inflammation. In contrast, cigarette smoke, a major risk factor for the development of COPD, selectively inhibited LTA(4)H aminopeptidase activity, which led to the accumulation of PGP and neutrophils. These studies imply that therapeutic strategies inhibiting LTA(4)H to prevent LTB(4) generation may not reduce neutrophil recruitment because of elevated levels of PGP.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072752/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072752/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Snelgrove, Robert J -- Jackson, Patricia L -- Hardison, Matthew T -- Noerager, Brett D -- Kinloch, Andrew -- Gaggar, Amit -- Shastry, Suresh -- Rowe, Steven M -- Shim, Yun M -- Hussell, Tracy -- Blalock, J Edwin -- 082727/Z/07/Z/Wellcome Trust/United Kingdom -- 1K23DK075788/DK/NIDDK NIH HHS/ -- 1R03DK084110-01/DK/NIDDK NIH HHS/ -- G0400795/Medical Research Council/United Kingdom -- G0802752/Medical Research Council/United Kingdom -- HL07783/HL/NHLBI NIH HHS/ -- HL087824/HL/NHLBI NIH HHS/ -- HL090999/HL/NHLBI NIH HHS/ -- HL102371-A1/HL/NHLBI NIH HHS/ -- K08HL091127/HL/NHLBI NIH HHS/ -- P171/03/C1/048/Medical Research Council/United Kingdom -- P30 DK079337/DK/NIDDK NIH HHS/ -- P30AR050948/AR/NIAMS NIH HHS/ -- P30CA13148/CA/NCI NIH HHS/ -- P50 AT00477/AT/NCCIH NIH HHS/ -- R01 HL077783/HL/NHLBI NIH HHS/ -- R01 HL077783-05/HL/NHLBI NIH HHS/ -- R01 HL087824/HL/NHLBI NIH HHS/ -- R01 HL087824-02/HL/NHLBI NIH HHS/ -- R01 HL090999/HL/NHLBI NIH HHS/ -- R01 HL090999-02S1/HL/NHLBI NIH HHS/ -- R01 HL090999-04/HL/NHLBI NIH HHS/ -- R01 HL102371/HL/NHLBI NIH HHS/ -- RR19231/RR/NCRR NIH HHS/ -- U54CA100949/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 1;330(6000):90-4. doi: 10.1126/science.1190594. Epub 2010 Sep 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham Lung Health Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA. rjs198@imperial.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20813919" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Bronchoalveolar Lavage Fluid/chemistry ; Cells, Cultured ; Chemokines, CXC/metabolism ; Chemotaxis, Leukocyte ; Epoxide Hydrolases/antagonists & inhibitors/isolation & purification/*metabolism ; Female ; Humans ; Inflammation ; Leukotriene B4/metabolism ; Lung/*immunology/metabolism/pathology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Neutrophils/enzymology/immunology/*physiology ; Oligopeptides/*metabolism ; Orthomyxoviridae Infections/immunology/metabolism/pathology ; Pneumococcal Infections/immunology/metabolism/pathology ; Pneumonia/*immunology/metabolism/pathology/therapy ; Proline/*analogs & derivatives/metabolism ; Pulmonary Disease, Chronic Obstructive/immunology/metabolism/pathology ; *Smoke ; Tobacco
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2010-12-04
    Description: Although the proteins BAX and BAK are required for initiation of apoptosis at the mitochondria, how BAX and BAK are activated remains unsettled. We provide in vivo evidence demonstrating an essential role of the proteins BID, BIM, and PUMA in activating BAX and BAK. Bid, Bim, and Puma triple-knockout mice showed the same developmental defects that are associated with deficiency of Bax and Bak, including persistent interdigital webs and imperforate vaginas. Genetic deletion of Bid, Bim, and Puma prevented the homo-oligomerization of BAX and BAK, and thereby cytochrome c-mediated activation of caspases in response to diverse death signals in neurons and T lymphocytes, despite the presence of other BH3-only molecules. Thus, many forms of apoptosis require direct activation of BAX and BAK at the mitochondria by a member of the BID, BIM, or PUMA family of proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163443/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163443/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ren, Decheng -- Tu, Ho-Chou -- Kim, Hyungjin -- Wang, Gary X -- Bean, Gregory R -- Takeuchi, Osamu -- Jeffers, John R -- Zambetti, Gerard P -- Hsieh, James J-D -- Cheng, Emily H-Y -- P30CA21765/CA/NCI NIH HHS/ -- R01 CA125562/CA/NCI NIH HHS/ -- R01 CA125562-02/CA/NCI NIH HHS/ -- R01 CA125562-03/CA/NCI NIH HHS/ -- R01 CA125562-04/CA/NCI NIH HHS/ -- R01CA125562/CA/NCI NIH HHS/ -- R01GM083159/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1390-3. doi: 10.1126/science.1190217.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21127253" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/deficiency/genetics/*metabolism ; BH3 Interacting Domain Death Agonist Protein/deficiency/genetics/*metabolism ; Caspases/metabolism ; Cells, Cultured ; Cerebellum/cytology ; Cytochromes c/metabolism ; Intracellular Membranes/metabolism ; Membrane Proteins/deficiency/genetics/*metabolism ; Mice ; Mice, Knockout ; Mitochondria/metabolism ; Models, Biological ; Neurons/*physiology ; Permeability ; Protein Multimerization ; Proto-Oncogene Proteins/deficiency/genetics/*metabolism ; Stress, Physiological ; T-Lymphocytes/physiology ; Tumor Suppressor Proteins/deficiency/genetics/*metabolism ; bcl-2 Homologous Antagonist-Killer Protein/chemistry/genetics/*metabolism ; bcl-2-Associated X Protein/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-04-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ray-Gallet, Dominique -- Almouzni, Genevieve -- New York, N.Y. -- Science. 2010 Apr 2;328(5974):56-7. doi: 10.1126/science.1188653.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Nuclear Dynamics and Genome Plasticity, UMR218 CNRS/Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360101" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle ; Cells, Cultured ; Chromatin/*metabolism ; Chromatin Assembly and Disassembly ; DNA Replication ; Histones/*chemistry/*metabolism ; Humans ; Nucleosomes/*metabolism ; Protein Multimerization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-05-28
    Description: Two broad classes of models have been proposed to explain the patterning of the proximal-distal axis of the vertebrate limb (from the shoulder to the digit tips). Differentiating between them, we demonstrate that early limb mesenchyme in the chick is initially maintained in a state capable of generating all limb segments through exposure to a combination of proximal and distal signals. As the limb bud grows, the proximal limb is established through continued exposure to flank-derived signal(s), whereas the developmental program determining the medial and distal segments is initiated in domains that grow beyond proximal influence. In addition, the system we have developed, combining in vitro and in vivo culture, opens the door to a new level of analysis of patterning mechanisms in the limb.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258580/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258580/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooper, Kimberly L -- Hu, Jimmy Kuang-Hsien -- ten Berge, Derk -- Fernandez-Teran, Marian -- Ros, Maria A -- Tabin, Clifford J -- R37 HD032443/HD/NICHD NIH HHS/ -- R37 HD032443-17/HD/NICHD NIH HHS/ -- R37HD032443/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2011 May 27;332(6033):1083-6. doi: 10.1126/science.1199499.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard Medical School, Department of Genetics, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617075" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Cell Proliferation ; Cells, Cultured ; Chick Embryo ; Chondrogenesis ; Culture Media ; Extremities/*embryology ; Fibroblast Growth Factors/metabolism/pharmacology ; Gene Expression Regulation, Developmental ; Homeodomain Proteins/genetics/metabolism ; Limb Buds/cytology/*embryology/metabolism ; Mesoderm/cytology/embryology/metabolism ; Neoplasm Proteins/genetics/metabolism ; Signal Transduction ; Tretinoin/metabolism/pharmacology ; Wnt Proteins/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-01-29
    Description: Hypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through various cellular mechanisms, including dampening of transforming growth factor-beta signaling. It prevented accumulation of chondroitin sulfate proteoglycans and rendered the lesion site permissive for axon regeneration of growth-competent sensory neurons. Microtubule stabilization also promoted growth of central nervous system axons of the Raphe-spinal tract and led to functional improvement. Thus, microtubule stabilization reduces fibrotic scarring and enhances the capacity of axons to grow.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330754/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330754/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hellal, Farida -- Hurtado, Andres -- Ruschel, Jorg -- Flynn, Kevin C -- Laskowski, Claudia J -- Umlauf, Martina -- Kapitein, Lukas C -- Strikis, Dinara -- Lemmon, Vance -- Bixby, John -- Hoogenraad, Casper C -- Bradke, Frank -- R01 HD057632/HD/NICHD NIH HHS/ -- R01 HD057632-04/HD/NICHD NIH HHS/ -- R01 NS059866/NS/NINDS NIH HHS/ -- R01 NS059866-03/NS/NINDS NIH HHS/ -- R01 NS059866-04/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):928-31. doi: 10.1126/science.1201148. Epub 2011 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Axonal Growth and Regeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273450" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Cells, Cultured ; Chondroitin Sulfate Proteoglycans/metabolism ; Cicatrix/pathology/*prevention & control ; Female ; Ganglia, Spinal/cytology ; Kinesin/metabolism ; Microtubules/drug effects/*metabolism ; Paclitaxel/*administration & dosage/pharmacology ; Protein Transport ; Rats ; Rats, Sprague-Dawley ; Sensory Receptor Cells/physiology ; Signal Transduction ; Smad2 Protein/metabolism ; Spinal Cord/cytology/drug effects ; Spinal Cord Injuries/*drug therapy/pathology/*physiopathology ; *Spinal Cord Regeneration ; Transforming Growth Factor beta/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2012-08-28
    Description: Mucus clearance is the primary defense mechanism that protects airways from inhaled infectious and toxic agents. In the current gel-on-liquid mucus clearance model, a mucus gel is propelled on top of a "watery" periciliary layer surrounding the cilia. However, this model fails to explain the formation of a distinct mucus layer in health or why mucus clearance fails in disease. We propose a gel-on-brush model in which the periciliary layer is occupied by membrane-spanning mucins and mucopolysaccharides densely tethered to the airway surface. This brush prevents mucus penetration into the periciliary space and causes mucus to form a distinct layer. The relative osmotic moduli of the mucus and periciliary brush layers explain both the stability of mucus clearance in health and its failure in airway disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633213/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633213/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Button, Brian -- Cai, Li-Heng -- Ehre, Camille -- Kesimer, Mehmet -- Hill, David B -- Sheehan, John K -- Boucher, Richard C -- Rubinstein, Michael -- HHSN268200900020/PHS HHS/ -- K01DK080847/DK/NIDDK NIH HHS/ -- P01HL108808/HL/NHLBI NIH HHS/ -- P01HL110873-01/HL/NHLBI NIH HHS/ -- P01HL34322/HL/NHLBI NIH HHS/ -- P30DK065988/DK/NIDDK NIH HHS/ -- P50HL107168/HL/NHLBI NIH HHS/ -- P50HL107168-01/HL/NHLBI NIH HHS/ -- R01 HL103940/HL/NHLBI NIH HHS/ -- R01HL077546/HL/NHLBI NIH HHS/ -- R01HL103940/HL/NHLBI NIH HHS/ -- UL1-RR025747/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 24;337(6097):937-41. doi: 10.1126/science.1223012.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cystic Fibrosis Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22923574" target="_blank"〉PubMed〈/a〉
    Keywords: Cells, Cultured ; Cilia/*physiology/ultrastructure ; Gels ; Glycosaminoglycans/*physiology ; Humans ; Lung/*physiology ; Lung Diseases/physiopathology ; *Models, Biological ; Mucins/*physiology ; *Mucociliary Clearance ; Mucus/*physiology ; Osmotic Pressure ; Respiratory Mucosa/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2012-12-15
    Description: Mammalian imprinted genes often cluster with long noncoding (lnc) RNAs. Three lncRNAs that induce parental-specific silencing show hallmarks indicating that their transcription is more important than their product. To test whether Airn transcription or product silences the Igf2r gene, we shortened the endogenous lncRNA to different lengths. The results excluded a role for spliced and unspliced Airn lncRNA products and for Airn nuclear size and location in silencing Igf2r. Instead, silencing only required Airn transcriptional overlap of the Igf2r promoter, which interferes with RNA polymerase II recruitment in the absence of repressive chromatin. Such a repressor function for lncRNA transcriptional overlap reveals a gene silencing mechanism that may be widespread in the mammalian genome, given the abundance of lncRNA transcripts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Latos, Paulina A -- Pauler, Florian M -- Koerner, Martha V -- Senergin, H Basak -- Hudson, Quanah J -- Stocsits, Roman R -- Allhoff, Wolfgang -- Stricker, Stefan H -- Klement, Ruth M -- Warczok, Katarzyna E -- Aumayr, Karin -- Pasierbek, Pawel -- Barlow, Denise P -- New York, N.Y. -- Science. 2012 Dec 14;338(6113):1469-72. doi: 10.1126/science.1228110.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239737" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Cells, Cultured ; *Gene Silencing ; *Genomic Imprinting ; Mice ; Multigene Family ; Promoter Regions, Genetic ; RNA Polymerase II/metabolism ; RNA, Long Noncoding/genetics/*metabolism ; Receptor, IGF Type 2/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2012-01-28
    Description: During the activation of humoral immune responses, B cells acquire antigen for subsequent presentation to cognate T cells. Here we show that after mouse B cells accumulate antigen, it is maintained in a polarized distribution for extended periods in vivo. Using high-throughput imaging flow cytometry, we observed that this polarization is preserved during B cell division, promoting asymmetric antigen segregation among progeny. Antigen inheritance correlates with the ability of progeny to activate T cells: Daughter cells receiving larger antigen stores exhibit a prolonged capacity to present antigen, which renders them more effective in competing for T cell help. The generation of progeny with differential capacities for antigen presentation may have implications for somatic hypermutation and class switching during affinity maturation and as B cells commit to effector cell fates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thaunat, Olivier -- Granja, Aitor G -- Barral, Patricia -- Filby, Andrew -- Montaner, Beatriz -- Collinson, Lucy -- Martinez-Martin, Nuria -- Harwood, Naomi E -- Bruckbauer, Andreas -- Batista, Facundo D -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2012 Jan 27;335(6067):475-9. doi: 10.1126/science.1214100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22282815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; Antigens/*analysis/*immunology ; B-Lymphocytes/cytology/*immunology ; Cell Division ; Cell Proliferation ; Cells, Cultured ; Coculture Techniques ; Computer Simulation ; Flow Cytometry ; *Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Immunological ; Muramidase/analysis/immunology ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-12-17
    Description: Lysosomal storage diseases (LSDs) are a group of heterogeneous disorders caused by defects in lysosomal enzymes or transporters, resulting in accumulation of undegraded macromolecules or metabolites. Macrophage numbers are expanded in several LSDs, leading to histiocytosis of unknown pathophysiology. Here, we found that mice lacking the equilibrative nucleoside transporter 3 (ENT3) developed a spontaneous and progressive macrophage-dominated histiocytosis. In the absence of ENT3, defective apoptotic cell clearance led to lysosomal nucleoside buildup, elevated intralysosomal pH, and altered macrophage function. The macrophage accumulation was partly due to increased macrophage colony-stimulating factor and receptor expression and signaling secondary to the lysosomal defects. These studies suggest a cellular and molecular basis for the development of histiocytosis in several human syndromes associated with ENT3 mutations and potentially other LSDs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsu, Chia-Lin -- Lin, Weiyu -- Seshasayee, Dhaya -- Chen, Yung-Hsiang -- Ding, Xiao -- Lin, Zhonghua -- Suto, Eric -- Huang, Zhiyu -- Lee, Wyne P -- Park, Hyunjoo -- Xu, Min -- Sun, Mei -- Rangell, Linda -- Lutman, Jeff L -- Ulufatu, Sheila -- Stefanich, Eric -- Chalouni, Cecile -- Sagolla, Meredith -- Diehl, Lauri -- Fielder, Paul -- Dean, Brian -- Balazs, Mercedesz -- Martin, Flavius -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):89-92. doi: 10.1126/science.1213682. Epub 2011 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22174130" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/metabolism ; Animals ; Apoptosis ; Cell Count ; Cell Proliferation ; Cells, Cultured ; Histiocytosis/*physiopathology ; *Homeostasis ; Humans ; Hydrogen-Ion Concentration ; Listeriosis/immunology/microbiology ; Lysosomal Storage Diseases/physiopathology ; Lysosomes/*physiology/ultrastructure ; Macrophage Colony-Stimulating Factor/metabolism ; Macrophages/immunology/*physiology/ultrastructure ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myelopoiesis ; Nucleoside Transport Proteins/genetics/*physiology ; Phagocytosis ; Receptor, Macrophage Colony-Stimulating Factor/metabolism ; Signal Transduction ; Thymocytes/immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-04-06
    Description: A number of human cancers harbor somatic point mutations in the genes encoding isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2). These mutations alter residues in the enzyme active sites and confer a gain-of-function in cancer cells, resulting in the accumulation and secretion of the oncometabolite (R)-2-hydroxyglutarate (2HG). We developed a small molecule, AGI-6780, that potently and selectively inhibits the tumor-associated mutant IDH2/R140Q. A crystal structure of AGI-6780 complexed with IDH2/R140Q revealed that the inhibitor binds in an allosteric manner at the dimer interface. The results of steady-state enzymology analysis were consistent with allostery and slow-tight binding by AGI-6780. Treatment with AGI-6780 induced differentiation of TF-1 erythroleukemia and primary human acute myelogenous leukemia cells in vitro. These data provide proof-of-concept that inhibitors targeting mutant IDH2/R140Q could have potential applications as a differentiation therapy for cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Fang -- Travins, Jeremy -- DeLaBarre, Byron -- Penard-Lacronique, Virginie -- Schalm, Stefanie -- Hansen, Erica -- Straley, Kimberly -- Kernytsky, Andrew -- Liu, Wei -- Gliser, Camelia -- Yang, Hua -- Gross, Stefan -- Artin, Erin -- Saada, Veronique -- Mylonas, Elena -- Quivoron, Cyril -- Popovici-Muller, Janeta -- Saunders, Jeffrey O -- Salituro, Francesco G -- Yan, Shunqi -- Murray, Stuart -- Wei, Wentao -- Gao, Yi -- Dang, Lenny -- Dorsch, Marion -- Agresta, Sam -- Schenkein, David P -- Biller, Scott A -- Su, Shinsan M -- de Botton, Stephane -- Yen, Katharine E -- New York, N.Y. -- Science. 2013 May 3;340(6132):622-6. doi: 10.1126/science.1234769. Epub 2013 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agios Pharmaceuticals, Cambridge, MA 02139-4169, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23558173" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Site ; Antineoplastic Agents/chemistry/metabolism/pharmacology ; Catalytic Domain ; Cell Line, Tumor ; Cell Proliferation ; Cells, Cultured ; Crystallography, X-Ray ; Enzyme Inhibitors/chemistry/metabolism/*pharmacology ; Erythropoiesis/drug effects ; Gene Expression Regulation, Leukemic ; Glutarates/metabolism ; Hematopoiesis/*drug effects ; Humans ; Isocitrate Dehydrogenase/*antagonists & inhibitors/chemistry/*genetics/metabolism ; Leukemia, Erythroblastic, Acute ; Leukemia, Myeloid, Acute/drug therapy/*enzymology/genetics/pathology ; Molecular Targeted Therapy ; Mutant Proteins/antagonists & inhibitors/chemistry/metabolism ; Phenylurea Compounds/chemistry/metabolism/*pharmacology ; Point Mutation ; Protein Multimerization ; Protein Structure, Secondary ; Small Molecule Libraries ; Sulfonamides/chemistry/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...