ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (31)
  • American Association for the Advancement of Science (AAAS)  (31)
  • 2020-2023
  • 2015-2019  (12)
  • 2000-2004  (19)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2002-04-16
    Description: One of the factors postulated to drive the aging process is the accumulation of DNA damage. Here, we provide strong support for this hypothesis by describing studies of mice with a mutation in XPD, a gene encoding a DNA helicase that functions in both repair and transcription and that is mutated in the human disorder trichothiodystrophy (TTD). TTD mice were found to exhibit many symptoms of premature aging, including osteoporosis and kyphosis, osteosclerosis, early greying, cachexia, infertility, and reduced life-span. TTD mice carrying an additional mutation in XPA, which enhances the DNA repair defect, showed a greatly accelerated aging phenotype, which correlated with an increased cellular sensitivity to oxidative DNA damage. We hypothesize that aging in TTD mice is caused by unrepaired DNA damage that compromises transcription, leading to functional inactivation of critical genes and enhanced apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Boer, Jan -- Andressoo, Jaan Olle -- de Wit, Jan -- Huijmans, Jan -- Beems, Rudolph B -- van Steeg, Harry -- Weeda, Geert -- van der Horst, Gijsbertus T J -- van Leeuwen, Wibeke -- Themmen, Axel P N -- Meradji, Morteza -- Hoeijmakers, Jan H J -- AG 17242-02/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2002 May 17;296(5571):1276-9. Epub 2002 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Genetics Center, Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus University, 3000 DR Rotterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11950998" target="_blank"〉PubMed〈/a〉
    Keywords: *Aging ; Aging, Premature/*etiology ; Animals ; Apoptosis ; Bone Density ; Cachexia/etiology ; Crosses, Genetic ; *DNA Damage ; DNA Helicases/genetics/*physiology ; *DNA Repair ; DNA-Binding Proteins/genetics/physiology ; Female ; Fertility ; Gene Targeting ; Growth Disorders/etiology/genetics ; Hair Diseases/genetics ; Kyphosis/etiology/genetics/pathology ; Male ; Mice ; Mutation ; Oxidative Stress ; Phenotype ; Point Mutation ; Proteins/genetics/*physiology ; RNA-Binding Proteins/genetics/physiology ; *Transcription Factors ; Transcription, Genetic ; Xeroderma Pigmentosum Group A Protein ; Xeroderma Pigmentosum Group D Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-05-06
    Description: Degenerative disorders of motor neurons include a range of progressive fatal diseases such as amyotrophic lateral sclerosis (ALS), spinal-bulbar muscular atrophy (SBMA), and spinal muscular atrophy (SMA). Although the causative genetic alterations are known for some cases, the molecular basis of many SMA and SBMA-like syndromes and most ALS cases is unknown. Here we show that missense point mutations in the cytoplasmic dynein heavy chain result in progressive motor neuron degeneration in heterozygous mice, and in homozygotes this is accompanied by the formation of Lewy-like inclusion bodies, thus resembling key features of human pathology. These mutations exclusively perturb neuron-specific functions of dynein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hafezparast, Majid -- Klocke, Rainer -- Ruhrberg, Christiana -- Marquardt, Andreas -- Ahmad-Annuar, Azlina -- Bowen, Samantha -- Lalli, Giovanna -- Witherden, Abi S -- Hummerich, Holger -- Nicholson, Sharon -- Morgan, P Jeffrey -- Oozageer, Ravi -- Priestley, John V -- Averill, Sharon -- King, Von R -- Ball, Simon -- Peters, Jo -- Toda, Takashi -- Yamamoto, Ayumu -- Hiraoka, Yasushi -- Augustin, Martin -- Korthaus, Dirk -- Wattler, Sigrid -- Wabnitz, Philipp -- Dickneite, Carmen -- Lampel, Stefan -- Boehme, Florian -- Peraus, Gisela -- Popp, Andreas -- Rudelius, Martina -- Schlegel, Juergen -- Fuchs, Helmut -- Hrabe de Angelis, Martin -- Schiavo, Giampietro -- Shima, David T -- Russ, Andreas P -- Stumm, Gabriele -- Martin, Joanne E -- Fisher, Elizabeth M C -- New York, N.Y. -- Science. 2003 May 2;300(5620):808-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurodegenerative Disease, Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730604" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anterior Horn Cells/pathology ; Apoptosis ; *Axonal Transport ; Cell Differentiation ; Cell Movement ; Central Nervous System/embryology ; Chromosome Mapping ; Dimerization ; Dyneins/chemistry/*genetics/*physiology ; Female ; Ganglia, Spinal/pathology ; Golgi Apparatus/metabolism/ultrastructure ; Heterozygote ; Homozygote ; Lewy Bodies/pathology ; Male ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Motor Neuron Disease/*genetics/pathology/physiopathology ; Motor Neurons/*physiology/ultrastructure ; Mutation ; Mutation, Missense ; *Nerve Degeneration ; Peptide Fragments/metabolism ; Phenotype ; Point Mutation ; Spinal Nerves/growth & development ; Tetanus Toxin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-02-26
    Description: The molecular control of self-renewal and differentiation of stem cells has remained enigmatic. Transgenic loss-of-function and overexpression models now show that the dosage of glial cell line-derived neurotrophic factor (GDNF), produced by Sertoli cells, regulates cell fate decisions of undifferentiated spermatogonial cells that include the stem cells for spermatogenesis. Gene-targeted mice with one GDNF-null allele show depletion of stem cell reserves, whereas mice overexpressing GDNF show accumulation of undifferentiated spermatogonia. They are unable to respond properly to differentiation signals and undergo apoptosis upon retinoic acid treatment. Nonmetastatic testicular tumors are regularly formed in older GDNF-overexpressing mice. Thus, GDNF contributes to paracrine regulation of spermatogonial self-renewal and differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meng, X -- Lindahl, M -- Hyvonen, M E -- Parvinen, M -- de Rooij, D G -- Hess, M W -- Raatikainen-Ahokas, A -- Sainio, K -- Rauvala, H -- Lakso, M -- Pichel, J G -- Westphal, H -- Saarma, M -- Sariola, H -- New York, N.Y. -- Science. 2000 Feb 25;287(5457):1489-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Programs of Developmental Biology, Molecular Neurobiology, Electron Microscopy Unit, Institute of Biotechnology, Viikki Biocenter, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10688798" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/drug effects ; Cell Cycle ; Cell Differentiation/drug effects ; Cobalt/metabolism ; *Drosophila Proteins ; Female ; Gene Expression ; Gene Targeting ; Glial Cell Line-Derived Neurotrophic Factor ; Glial Cell Line-Derived Neurotrophic Factor Receptors ; Male ; Mice ; Mice, Transgenic ; Mitosis ; *Nerve Growth Factors ; Nerve Tissue Proteins/genetics/*physiology ; Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins c-ret ; Receptor Protein-Tyrosine Kinases/genetics/metabolism ; Sertoli Cells/cytology/physiology ; *Spermatogenesis ; Spermatogonia/*cytology/drug effects ; Stem Cells/*cytology ; Testicular Neoplasms/pathology ; Testis/anatomy & histology ; Vitamin A/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-10-20
    Description: Ectodysplasin, a member of the tumor necrosis factor family, is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Mutations in EDA give rise to a clinical syndrome characterized by loss of hair, sweat glands, and teeth. EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that differ only by an insertion of two amino acids. This insertion functions to determine receptor binding specificity, such that EDA-A1 binds only the receptor EDAR, whereas EDA-A2 binds only the related, but distinct, X-linked ectodysplasin-A2 receptor (XEDAR). In situ binding and organ culture studies indicate that EDA-A1 and EDA-A2 are differentially expressed and play a role in epidermal morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, M -- Wang, L C -- Hymowitz, S G -- Schilbach, S -- Lee, J -- Goddard, A -- de Vos, A M -- Gao, W Q -- Dixit, V M -- New York, N.Y. -- Science. 2000 Oct 20;290(5491):523-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11039935" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Binding Sites ; Cell Line ; DNA-Binding Proteins/metabolism ; Ectodermal Dysplasia/genetics ; Ectodysplasins ; Epidermis/embryology/*metabolism ; Humans ; *I-kappa B Proteins ; In Situ Hybridization ; Ligands ; Membrane Proteins/*chemistry/*metabolism ; Mice ; Models, Molecular ; Molecular Sequence Data ; Morphogenesis ; NF-kappa B/metabolism ; Phosphorylation ; Point Mutation ; Protein Conformation ; Proteins/metabolism ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; TNF Receptor-Associated Factor 6 ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-02-23
    Description: The identification of pathways mediated by the kinase Cdk5 and the ligand reelin has provided a conceptual framework for exploring the molecular mechanisms underlying proper lamination of the developing mammalian cerebral cortex. In this report, we identify a component of the regulation of Cdk5-mediated cortical lamination by genetic analysis of the roles of the class III POU domain transcription factors, Brn-1 and Brn-2, expressed during the development of the forebrain and coexpressed in most layer II-V cortical neurons. Brn-1 and Brn-2 appear to critically control the initiation of radial migration, redundantly regulating the cell-autonomous expression of the p35 and p39 regulatory subunits of Cdk5 in migrating cortical neurons, with Brn-1(-/-)/Brn-2(-/-) mice exhibiting cortical inversion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McEvilly, Robert J -- de Diaz, Marcela Ortiz -- Schonemann, Marcus D -- Hooshmand, Farideh -- Rosenfeld, Michael G -- New York, N.Y. -- Science. 2002 Feb 22;295(5559):1528-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037-0648, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11859196" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/cytology/embryology/metabolism ; Cell Adhesion Molecules, Neuronal/genetics/metabolism ; Cell Line ; Cell Movement ; Cerebral Cortex/cytology/embryology/*metabolism ; Cyclin-Dependent Kinase 5 ; Cyclin-Dependent Kinases/metabolism ; Extracellular Matrix Proteins/genetics/metabolism ; Female ; Gene Targeting ; Hippocampus/cytology/embryology/metabolism ; Homeodomain Proteins ; In Situ Hybridization ; Male ; Mice ; Mutation ; Nerve Tissue Proteins/genetics/metabolism ; Neurons/*physiology ; Neuropeptides/genetics/*physiology ; POU Domain Factors ; Serine Endopeptidases ; Trans-Activators/genetics/*physiology ; Transcription Factors/genetics/*physiology ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-12-16
    Description: The retinoid X receptor (RXR) is a nuclear receptor that functions as a ligand-activated transcription factor. Little is known about the ligands that activate RXR in vivo. Here, we identified a factor in brain tissue from adult mice that activates RXR in cell-based assays. Purification and analysis of the factor by mass spectrometry revealed that it is docosahexaenoic acid (DHA), a long-chain polyunsaturated fatty acid that is highly enriched in the adult mammalian brain. Previous work has shown that DHA is essential for brain maturation, and deficiency of DHA in both rodents and humans leads to impaired spatial learning and other abnormalities. These data suggest that DHA may influence neural function through activation of an RXR signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Urquiza, A M -- Liu, S -- Sjoberg, M -- Zetterstrom, R H -- Griffiths, W -- Sjovall, J -- Perlmann, T -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2140-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research, Stockholm Branch, Box 240, S-171 77 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11118147" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Assay ; Brain/growth & development/metabolism ; *Brain Chemistry ; Cell Line ; Chromatography, High Pressure Liquid ; Culture Media, Conditioned ; Dimerization ; Docosahexaenoic Acids/*isolation & purification/*metabolism/pharmacology ; Fatty Acids, Unsaturated/pharmacology ; Histone Acetyltransferases ; Humans ; Ligands ; Male ; Mice ; Nuclear Receptor Coactivator 1 ; Receptors, Retinoic Acid/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Retinoid X Receptors ; Signal Transduction ; Spectrometry, Mass, Electrospray Ionization ; Transcription Factors/genetics/*metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2001-12-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Den Brink, G R -- de Santa Barbara, P -- Roberts, D J -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2115-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Academic Medical Center, Department of Experimental Internal Medicine in the Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11739944" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Basic Helix-Loop-Helix Transcription Factors ; *Cell Differentiation ; Cell Division ; Cell Lineage ; Enterocytes/cytology ; Enteroendocrine Cells/cytology ; Epithelial Cells/cytology ; Goblet Cells/cytology ; Helix-Loop-Helix Motifs ; Homeodomain Proteins/metabolism ; Intestinal Mucosa/*cytology/metabolism ; Mice ; Paneth Cells/cytology ; Signal Transduction ; Stem Cells/*cytology ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2002-08-17
    Description: In striated muscle, the plasma membrane forms tubular invaginations (transverse tubules or T-tubules) that function in depolarization-contraction coupling. Caveolin-3 and amphiphysin were implicated in their biogenesis. Amphiphysin isoforms have a putative role in membrane deformation at endocytic sites. An isoform of amphiphysin 2 concentrated at T-tubules induced tubular plasma membrane invaginations when expressed in nonmuscle cells. This property required exon 10, a phosphoinositide-binding module. In developing myotubes, amphiphysin 2 and caveolin-3 segregated in tubular and vesicular portions of the T-tubule system, respectively. These findings support a role of the bilayer-deforming properties of amphiphysin at T-tubules and, more generally, a physiological role of amphiphysin in membrane deformation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Eunkyung -- Marcucci, Melissa -- Daniell, Laurie -- Pypaert, Marc -- Weisz, Ora A -- Ochoa, Gian-Carlo -- Farsad, Khashayar -- Wenk, Markus R -- De Camilli, Pietro -- CA46128/CA/NCI NIH HHS/ -- NS36251/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 16;297(5584):1193-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12183633" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Caveolin 3 ; Caveolins/metabolism ; Cell Differentiation ; Cell Line ; Cell Membrane/metabolism ; Cell Membrane Structures/metabolism/*ultrastructure ; Cricetinae ; Dynamins ; Exons ; GTP Phosphohydrolases/metabolism ; Liposomes/metabolism ; Mice ; Microscopy, Electron ; Morphogenesis ; *Muscle Development ; Muscle, Skeletal/metabolism/*ultrastructure ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Phosphatidylinositol 4,5-Diphosphate/metabolism ; Protein Isoforms ; Protein Structure, Tertiary ; RNA, Small Interfering ; RNA, Untranslated/metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2000-10-13
    Description: A nuclear isoform of myosin I beta that contains a unique 16-amino acid amino-terminal extension has been identified. An affinity-purified antibody to the 16-amino acid peptide demonstrated nuclear staining. Confocal and electron microscopy revealed that nuclear myosin I beta colocalized with RNA polymerase II in an alpha-amanitin- and actinomycin D-sensitive manner. The antibody coimmunoprecipitated RNA polymerase II and blocked in vitro RNA synthesis. This isoform of myosin I beta appears to be in a complex with RNA polymerase II and may affect transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pestic-Dragovich, L -- Stojiljkovic, L -- Philimonenko, A A -- Nowak, G -- Ke, Y -- Settlage, R E -- Shabanowitz, J -- Hunt, D F -- Hozak, P -- de Lanerolle, P -- GM 37537/GM/NIGMS NIH HHS/ -- GM 56489/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Oct 13;290(5490):337-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11030652" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Actins/metabolism ; Amanitins/pharmacology ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Nucleus/*metabolism ; Cloning, Molecular ; Dactinomycin/pharmacology ; Exons ; HeLa Cells ; Humans ; Mice ; Microscopy, Confocal ; Microscopy, Electron ; *Molecular Motor Proteins ; Molecular Sequence Data ; Myosins/chemistry/genetics/immunology/*metabolism ; Nucleic Acid Synthesis Inhibitors/pharmacology ; Precipitin Tests ; Protein Isoforms/chemistry/genetics/immunology/metabolism ; RNA/*biosynthesis ; RNA Polymerase II/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-04-26
    Description: We generated mice lacking Cks2, one of two mammalian homologs of the yeast Cdk1-binding proteins, Suc1 and Cks1, and found them to be viable but sterile in both sexes. Sterility is due to failure of both male and female germ cells to progress past the first meiotic metaphase. The chromosomal events up through the end of prophase I are normal in both CKS2-/- males and females, suggesting that the phenotype is due directly to failure to enter anaphase and not a consequence of a checkpoint-mediated metaphase I arrest.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spruck, Charles H -- de Miguel, Maria P -- Smith, Adrian P L -- Ryan, Aimee -- Stein, Paula -- Schultz, Richard M -- Lincoln, A Jeannine -- Donovan, Peter J -- Reed, Steven I -- CA74224/CA/NCI NIH HHS/ -- HD22681/HD/NICHD NIH HHS/ -- HD38252/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):647-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, MB-7, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714746" target="_blank"〉PubMed〈/a〉
    Keywords: *Anaphase ; Animals ; Apoptosis ; *CDC2-CDC28 Kinases ; CDC28 Protein Kinase, S cerevisiae/genetics/*physiology ; Chromosome Segregation ; Cyclin A/metabolism ; Cyclin B/metabolism ; Epididymis/cytology/physiology ; Female ; Gene Targeting ; In Situ Hybridization ; Infertility, Female/physiopathology ; Infertility, Male/physiopathology ; Male ; *Meiosis ; *Metaphase ; Mice ; Mutation ; Oocytes/*physiology ; Ovary/cytology/physiology ; RNA, Messenger/genetics/metabolism ; Recombination, Genetic ; Spermatocytes/*physiology ; Spermatogenesis ; Testis/cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...