ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Binding Sites  (119)
  • Transfection  (107)
  • American Association for the Advancement of Science (AAAS)  (220)
  • American Institute of Physics
  • 2020-2022
  • 1995-1999  (208)
  • 1980-1984  (12)
  • 1940-1944
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (220)
  • American Institute of Physics
  • Springer  (2)
Years
Year
  • 1
    Publication Date: 1999-07-31
    Description: Estrogen receptor alpha transcriptional activity is regulated by distinct conformational states that are the result of ligand binding. Phage display was used to identify peptides that interact specifically with either estradiol- or tamoxifen-activated estrogen receptor alpha. When these peptides were coexpressed with estrogen receptor alpha in cells, they functioned as ligand-specific antagonists, indicating that estradiol-agonist and tamoxifen-partial agonist activities do not occur by the same mechanism. The ability to regulate estrogen receptor alpha transcriptional activity by targeting sites outside of the ligand-binding pocket has implications for the development of estrogen receptor alpha antagonists for the treatment of tamoxifen-refractory breast cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Norris, J D -- Paige, L A -- Christensen, D J -- Chang, C Y -- Huacani, M R -- Fan, D -- Hamilton, P T -- Fowlkes, D M -- McDonnell, D P -- DK48807/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):744-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Duke University Medical Center, Department of Pharmacology and Cancer Biology, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10426998" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Estradiol/metabolism/*pharmacology ; Estrogen Antagonists/*pharmacology ; Estrogen Receptor alpha ; Humans ; Ligands ; Mifepristone/pharmacology ; Molecular Sequence Data ; Peptide Library ; Peptides/metabolism/*pharmacology ; Receptors, Cytoplasmic and Nuclear/metabolism ; Receptors, Estrogen/agonists/*antagonists & inhibitors/chemistry/*metabolism ; Recombinant Fusion Proteins/pharmacology ; Tamoxifen/metabolism/*pharmacology ; Transcription Factor AP-1/genetics/metabolism ; Transcription, Genetic/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-06-26
    Description: Motilin is a 22-amino acid peptide hormone expressed throughout the gastrointestinal (GI) tract of humans and other species. It affects gastric motility by stimulating interdigestive antrum and duodenal contractions. A heterotrimeric guanosine triphosphate-binding protein (G protein)-coupled receptor for motilin was isolated from human stomach, and its amino acid sequence was found to be 52 percent identical to the human receptor for growth hormone secretagogues. The macrolide antibiotic erythromycin also interacted with the cloned motilin receptor, providing a molecular basis for its effects on the human GI tract. The motilin receptor is expressed in enteric neurons of the human duodenum and colon. Development of motilin receptor agonists and antagonists may be useful in the treatment of multiple disorders of GI motility.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feighner, S D -- Tan, C P -- McKee, K K -- Palyha, O C -- Hreniuk, D L -- Pong, S S -- Austin, C P -- Figueroa, D -- MacNeil, D -- Cascieri, M A -- Nargund, R -- Bakshi, R -- Abramovitz, M -- Stocco, R -- Kargman, S -- O'Neill, G -- Van Der Ploeg, L H -- Evans, J -- Patchett, A A -- Smith, R G -- Howard, A D -- New York, N.Y. -- Science. 1999 Jun 25;284(5423):2184-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Metabolic Disorders, Department of Medicinal Chemistry, Merck Research Laboratories, Building RY-80Y-265, 126 East Lincoln Avenue, Rahway, NJ 07065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10381885" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Base Sequence ; Binding Sites ; Calcium/metabolism ; Cell Line ; Chromosome Mapping ; Chromosomes, Human, Pair 13 ; Cloning, Molecular ; Colon/*metabolism ; Erythromycin/metabolism ; GTP-Binding Proteins/metabolism ; Humans ; In Situ Hybridization ; Intestine, Small/*metabolism ; Ligands ; Molecular Sequence Data ; Motilin/analogs & derivatives/*metabolism ; Receptors, Gastrointestinal Hormone/*chemistry/*genetics/metabolism ; Receptors, Neuropeptide/*chemistry/*genetics/metabolism ; Stomach/*metabolism ; Thyroid Gland/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-07-11
    Description: Niemann-Pick type C (NP-C) disease, a fatal neurovisceral disorder, is characterized by lysosomal accumulation of low density lipoprotein (LDL)-derived cholesterol. By positional cloning methods, a gene (NPC1) with insertion, deletion, and missense mutations has been identified in NP-C patients. Transfection of NP-C fibroblasts with wild-type NPC1 cDNA resulted in correction of their excessive lysosomal storage of LDL cholesterol, thereby defining the critical role of NPC1 in regulation of intracellular cholesterol trafficking. The 1278-amino acid NPC1 protein has sequence similarity to the morphogen receptor PATCHED and the putative sterol-sensing regions of SREBP cleavage-activating protein (SCAP) and 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carstea, E D -- Morris, J A -- Coleman, K G -- Loftus, S K -- Zhang, D -- Cummings, C -- Gu, J -- Rosenfeld, M A -- Pavan, W J -- Krizman, D B -- Nagle, J -- Polymeropoulos, M H -- Sturley, S L -- Ioannou, Y A -- Higgins, M E -- Comly, M -- Cooney, A -- Brown, A -- Kaneski, C R -- Blanchette-Mackie, E J -- Dwyer, N K -- Neufeld, E B -- Chang, T Y -- Liscum, L -- Strauss, J F 3rd -- Ohno, K -- Zeigler, M -- Carmi, R -- Sokol, J -- Markie, D -- O'Neill, R R -- van Diggelen, O P -- Elleder, M -- Patterson, M C -- Brady, R O -- Vanier, M T -- Pentchev, P G -- Tagle, D A -- New York, N.Y. -- Science. 1997 Jul 11;277(5323):228-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9211849" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Carrier Proteins ; Cholesterol/*metabolism ; Cholesterol, LDL/metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 18 ; Cloning, Molecular ; *Drosophila Proteins ; Homeostasis ; Humans ; Hydroxymethylglutaryl CoA Reductases/chemistry ; Insect Proteins/chemistry ; Intracellular Signaling Peptides and Proteins ; Lysosomes/metabolism ; *Membrane Glycoproteins ; Membrane Proteins/chemistry ; Molecular Sequence Data ; Mutation ; Niemann-Pick Diseases/*genetics/metabolism ; Polymorphism, Single-Stranded Conformational ; Proteins/chemistry/*genetics/physiology ; Receptors, Cell Surface/chemistry ; Sequence Homology, Amino Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-11-29
    Description: Transporter-facilitated uptake of serotonin (5-hydroxytryptamine or 5-HT) has been implicated in anxiety in humans and animal models and is the site of action of widely used uptake-inhibiting antidepressant and antianxiety drugs. Human 5-HT transporter (5-HTT) gene transcription is modulated by a common polymorphism in its upstream regulatory region. The short variant of the polymorphism reduces the transcriptional efficiency of the 5-HTT gene promoter, resulting in decreased 5-HTT expression and 5-HT uptake in lymphoblasts. Association studies in two independent samples totaling 505 individuals revealed that the 5-HTT polymorphism accounts for 3 to 4 percent of total variation and 7 to 9 percent of inherited variance in anxiety-related personality traits in individuals as well as sibships.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lesch, K P -- Bengel, D -- Heils, A -- Sabol, S Z -- Greenberg, B D -- Petri, S -- Benjamin, J -- Muller, C R -- Hamer, D H -- Murphy, D L -- New York, N.Y. -- Science. 1996 Nov 29;274(5292):1527-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, University of Wurzburg, Fuchsleinstrasse 15, 97080 Wurzburg, Germany. kplesch@rzbox.uni-wuerzburg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8929413" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Alleles ; Anxiety Disorders/*genetics ; Carrier Proteins/*genetics ; Cell Line ; Female ; Genetic Markers ; Genotype ; Humans ; Male ; Membrane Glycoproteins/*genetics ; *Membrane Transport Proteins ; Middle Aged ; *Nerve Tissue Proteins ; Neurotic Disorders/*genetics ; Nuclear Family ; Personality Tests ; Phenotype ; *Polymorphism, Genetic ; *Promoter Regions, Genetic ; Serotonin/*metabolism ; Serotonin Plasma Membrane Transport Proteins ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-05-21
    Description: Bile acids regulate the transcription of genes that control cholesterol homeostasis through molecular mechanisms that are poorly understood. Physiological concentrations of free and conjugated chenodeoxycholic acid, lithocholic acid, and deoxycholic acid activated the farnesoid X receptor (FXR; NR1H4), an orphan nuclear receptor. As ligands, these bile acids and their conjugates modulated interaction of FXR with a peptide derived from steroid receptor coactivator 1. These results provide evidence for a nuclear bile acid signaling pathway that may regulate cholesterol homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parks, D J -- Blanchard, S G -- Bledsoe, R K -- Chandra, G -- Consler, T G -- Kliewer, S A -- Stimmel, J B -- Willson, T M -- Zavacki, A M -- Moore, D D -- Lehmann, J M -- F32 DK09793/DK/NIDDK NIH HHS/ -- R01 DK53366/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1999 May 21;284(5418):1365-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biochemistry, Glaxo Wellcome Research and Development, Research Triangle Park NC, 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334993" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Acids and Salts/chemistry/*metabolism/pharmacology ; Carrier Proteins/metabolism ; Cell Line ; Chenodeoxycholic Acid/*metabolism/pharmacology ; Cholesterol/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Deoxycholic Acid/metabolism/pharmacology ; Histone Acetyltransferases ; Homeostasis ; Humans ; Ligands ; Lithocholic Acid/metabolism/pharmacology ; Mice ; Nuclear Receptor Coactivator 1 ; *Organic Anion Transporters, Sodium-Dependent ; Protein Conformation ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Structure-Activity Relationship ; *Symporters ; Transcription Factors/chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-12-11
    Description: Subsets of murine CD4+ T cells localize to different areas of the spleen after adoptive transfer. Naive and T helper 1 (TH1) cells, which express the chemokine receptor CCR7, are home to the periarteriolar lymphoid sheath, whereas activated TH2 cells, which lack CCR7, form rings at the periphery of the T cell zones near B cell follicles. Retroviral transduction of TH2 cells with CCR7 forces them to localize in a TH1-like pattern and inhibits their participation in B cell help in vivo but not in vitro. Thus, differential expression of chemokine receptors results in unique cellular migration patterns that are important for effective immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Randolph, D A -- Huang, G -- Carruthers, C J -- Bromley, L E -- Chaplin, D D -- AI34580/AI/NIAID NIH HHS/ -- T32 GM07200/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2159-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Allergy and Immunology, Department of Internal Medicine, Center for Immunology, Washington University School of Medicine. Howard Hughes Medical Institute, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10591648" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; B-Lymphocytes/*immunology ; Calcium/metabolism ; Cell Movement ; Lymphocyte Activation ; Mice ; Mice, Inbred BALB C ; Mice, Transgenic ; Ovalbumin/immunology ; Receptors, CCR7 ; Receptors, Chemokine/*immunology/metabolism ; Signal Transduction ; Spleen/*immunology ; Th1 Cells/*immunology/metabolism ; Th2 Cells/*immunology/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-05-13
    Description: Insulin elicits a spectrum of biological responses by binding to its cell surface receptor. In a screen for small molecules that activate the human insulin receptor tyrosine kinase, a nonpeptidyl fungal metabolite (L-783,281) was identified that acted as an insulin mimetic in several biochemical and cellular assays. The compound was selective for insulin receptor versus insulin-like growth factor I (IGFI) receptor and other receptor tyrosine kinases. Oral administration of L-783,281 to two mouse models of diabetes resulted in significant lowering in blood glucose levels. These results demonstrate the feasibility of discovering novel insulin receptor activators that may lead to new therapies for diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, B -- Salituro, G -- Szalkowski, D -- Li, Z -- Zhang, Y -- Royo, I -- Vilella, D -- Diez, M T -- Pelaez, F -- Ruby, C -- Kendall, R L -- Mao, X -- Griffin, P -- Calaycay, J -- Zierath, J R -- Heck, J V -- Smith, R G -- Moller, D E -- New York, N.Y. -- Science. 1999 May 7;284(5416):974-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Endocrinology, Merck Research Laboratories, R80W250, Post Office Box 2000, Rahway, NJ 07065, USA. bei_zhang@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10320380" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Ascomycota/*metabolism ; Binding Sites ; Blood Glucose/metabolism ; CHO Cells ; Cricetinae ; Diabetes Mellitus, Type 2/*drug therapy ; Dose-Response Relationship, Drug ; Drug Evaluation, Preclinical ; Enzyme Activation ; Glucose Tolerance Test ; Hyperglycemia/drug therapy ; Hypoglycemic Agents/chemistry/metabolism/*pharmacology/therapeutic use ; Indoles/chemistry/metabolism/*pharmacology/therapeutic use ; Insulin/blood/metabolism/*pharmacology ; Insulin Receptor Substrate Proteins ; Mice ; Mice, Mutant Strains ; Mice, Obese ; Molecular Mimicry ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Conformation/drug effects ; Receptor, Epidermal Growth Factor/metabolism ; Receptor, IGF Type 1/metabolism ; Receptor, Insulin/chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-04-16
    Description: Crystal structures of the murine cytokine-inducible nitric oxide synthase oxygenase dimer with active-center water molecules, the substrate L-arginine (L-Arg), or product analog thiocitrulline reveal how dimerization, cofactor tetrahydrobiopterin, and L-Arg binding complete the catalytic center for synthesis of the essential biological signal and cytotoxin nitric oxide. Pterin binding refolds the central interface region, recruits new structural elements, creates a 30 angstrom deep active-center channel, and causes a 35 degrees helical tilt to expose a heme edge and the adjacent residue tryptophan-366 for likely reductase domain interactions and caveolin inhibition. Heme propionate interactions with pterin and L-Arg suggest that pterin has electronic influences on heme-bound oxygen. L-Arginine binds to glutamic acid-371 and stacks with heme in an otherwise hydrophobic pocket to aid activation of heme-bound oxygen by direct proton donation and thereby differentiate the two chemical steps of nitric oxide synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crane, B R -- Arvai, A S -- Ghosh, D K -- Wu, C -- Getzoff, E D -- Stuehr, D J -- Tainer, J A -- HL58883/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 27;279(5359):2121-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9516116" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/chemistry/*metabolism ; Binding Sites ; Biopterin/*analogs & derivatives/chemistry/metabolism ; Citrulline/analogs & derivatives/chemistry/metabolism ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; Isoenzymes/chemistry/metabolism ; Ligands ; Macrophages/enzymology ; Mice ; Models, Molecular ; Nitric Oxide/biosynthesis ; Nitric Oxide Synthase/*chemistry/metabolism ; Nitric Oxide Synthase Type II ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Thiourea/analogs & derivatives/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-10-23
    Description: The nitric oxide synthase oxygenase domain (NOSox) oxidizes arginine to synthesize the cellular signal and defensive cytotoxin nitric oxide (NO). Crystal structures determined for cytokine-inducible NOSox reveal an unusual fold and heme environment for stabilization of activated oxygen intermediates key for catalysis. A winged beta sheet engenders a curved alpha-beta domain resembling a baseball catcher's mitt with heme clasped in the palm. The location of exposed hydrophobic residues and the results of mutational analysis place the dimer interface adjacent to the heme-binding pocket. Juxtaposed hydrophobic O2- and polar L-arginine-binding sites occupied by imidazole and aminoguanidine, respectively, provide a template for designing dual-function inhibitors and imply substrate-assisted catalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crane, B R -- Arvai, A S -- Gachhui, R -- Wu, C -- Ghosh, D K -- Getzoff, E D -- Stuehr, D J -- Tainer, J A -- CA53914/CA/NCI NIH HHS/ -- HL58883/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 17;278(5337):425-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9334294" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/chemistry/metabolism ; Binding Sites ; Biopterin/analogs & derivatives/metabolism ; *Caenorhabditis elegans Proteins ; Catalysis ; Crystallography, X-Ray ; Dimerization ; Enzyme Induction ; Enzyme Inhibitors/metabolism ; Guanidines/metabolism ; Heme/chemistry ; Homeodomain Proteins/chemistry/*genetics/physiology ; Hydrogen Bonding ; Imidazoles/metabolism ; Isoenzymes/antagonists & inhibitors/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nitric Oxide Synthase/antagonists & inhibitors/*chemistry/metabolism ; Oxidation-Reduction ; Oxygen/metabolism ; Oxygenases/chemistry/metabolism ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-03-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lasic, D D -- Papahadjopoulos, D -- New York, N.Y. -- Science. 1995 Mar 3;267(5202):1275-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MegaBios Corporation, Burlingame, CA 94010.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7871422" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Doxorubicin/administration & dosage ; *Drug Carriers ; *Genetic Therapy ; Humans ; Lipid Bilayers/chemistry ; *Liposomes/chemistry/pharmacokinetics ; Neoplasms/drug therapy ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...