ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (8)
  • Hydrogen Bonding  (3)
  • American Association for the Advancement of Science (AAAS)  (11)
  • American Association of Petroleum Geologists (AAPG)
  • Cambridge University Press
  • Springer Nature
  • 2020-2022
  • 2005-2009  (11)
  • 1965-1969
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (11)
  • American Association of Petroleum Geologists (AAPG)
  • Cambridge University Press
  • Springer Nature
  • Nature Publishing Group (NPG)  (10)
Years
Year
  • 1
    Publication Date: 2006-12-02
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383235/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383235/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maini, Philip K -- Baker, Ruth E -- Chuong, Cheng-Ming -- R01 AR042177/AR/NIAMS NIH HHS/ -- R01 AR042177-11/AR/NIAMS NIH HHS/ -- R01 AR042177-12/AR/NIAMS NIH HHS/ -- R01 AR047364/AR/NIAMS NIH HHS/ -- R01 AR047364-04/AR/NIAMS NIH HHS/ -- R01 AR047364-05/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 1;314(5804):1397-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Mathematical Biology, University of Oxford, Oxford OX1 3LB, UK. maini@maths.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17138885" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning ; Diffusion ; Hair Follicle/*growth & development/metabolism ; Intercellular Signaling Peptides and Proteins/*metabolism ; Mathematics ; Mice ; *Models, Biological ; Signal Transduction ; Wnt Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-12-08
    Description: Many bacterial pathogens have long, slender pili through which they adhere to host cells. The crystal structure of the major pilin subunit from the Gram-positive human pathogen Streptococcus pyogenes at 2.2 angstroms resolution reveals an extended structure comprising two all-beta domains. The molecules associate in columns through the crystal, with each carboxyl terminus adjacent to a conserved lysine of the next molecule. This lysine forms the isopeptide bonds that link the subunits in native pili, validating the relevance of the crystal assembly. Each subunit contains two lysine-asparagine isopeptide bonds generated by an intramolecular reaction, and we find evidence for similar isopeptide bonds in other cell surface proteins of Gram-positive bacteria. The present structure explains the strength and stability of such Gram-positive pili and could facilitate vaccine development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Hae Joo -- Coulibaly, Fasseli -- Clow, Fiona -- Proft, Thomas -- Baker, Edward N -- New York, N.Y. -- Science. 2007 Dec 7;318(5856):1625-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18063798" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Asparagine/chemistry ; Chemistry, Physical ; Crystallography, X-Ray ; Fimbriae Proteins/*chemistry ; Fimbriae, Bacterial/*chemistry/ultrastructure ; Hydrogen Bonding ; Lysine/chemistry ; Models, Molecular ; Molecular Sequence Data ; Peptides/chemistry ; Physicochemical Phenomena ; Protein Conformation ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Streptococcus pyogenes/*chemistry/metabolism/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-11-08
    Description: Disposable plasticware such as test tubes, pipette tips, and multiwell assay or culture plates are used routinely in most biological research laboratories. Manufacturing of plastics requires the inclusion of numerous chemicals to enhance stability, durability, and performance. Some lubricating (slip) agents, exemplified by oleamide, also occur endogenously in humans and are biologically active, and cationic biocides are included to prevent bacterial colonization of the plastic surface. We demonstrate that these manufacturing agents leach from laboratory plasticware into a standard aqueous buffer, dimethyl sulfoxide, and methanol and can have profound effects on proteins and thus on results from bioassays of protein function. These findings have far-reaching implications for the use of disposable plasticware in biological research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McDonald, G Reid -- Hudson, Alan L -- Dunn, Susan M J -- You, Haitao -- Baker, Glen B -- Whittal, Randy M -- Martin, Jonathan W -- Jha, Amitabh -- Edmondson, Dale E -- Holt, Andrew -- New York, N.Y. -- Science. 2008 Nov 7;322(5903):917. doi: 10.1126/science.1162395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2B7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18988846" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dimethyl Sulfoxide ; Disinfectants/*analysis/pharmacology ; *Disposable Equipment ; Humans ; *Laboratories ; Monoamine Oxidase/*metabolism ; Monoamine Oxidase Inhibitors/pharmacology ; Oleic Acids/*analysis/pharmacology ; Plastics/*chemistry ; Quaternary Ammonium Compounds/*analysis/pharmacology ; Rats ; Solvents
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-03-08
    Description: The creation of enzymes capable of catalyzing any desired chemical reaction is a grand challenge for computational protein design. Using new algorithms that rely on hashing techniques to construct active sites for multistep reactions, we designed retro-aldolases that use four different catalytic motifs to catalyze the breaking of a carbon-carbon bond in a nonnatural substrate. Of the 72 designs that were experimentally characterized, 32, spanning a range of protein folds, had detectable retro-aldolase activity. Designs that used an explicit water molecule to mediate proton shuffling were significantly more successful, with rate accelerations of up to four orders of magnitude and multiple turnovers, than those involving charged side-chain networks. The atomic accuracy of the design process was confirmed by the x-ray crystal structure of active designs embedded in two protein scaffolds, both of which were nearly superimposable on the design model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431203/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431203/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Lin -- Althoff, Eric A -- Clemente, Fernando R -- Doyle, Lindsey -- Rothlisberger, Daniela -- Zanghellini, Alexandre -- Gallaher, Jasmine L -- Betker, Jamie L -- Tanaka, Fujie -- Barbas, Carlos F 3rd -- Hilvert, Donald -- Houk, Kendall N -- Stoddard, Barry L -- Baker, David -- R01 CA097328/CA/NCI NIH HHS/ -- R01 GM049857/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Mar 7;319(5868):1387-91. doi: 10.1126/science.1152692.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18323453" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde-Lyases/*chemistry/metabolism ; *Algorithms ; Binding Sites ; Catalysis ; Catalytic Domain ; Computer Simulation ; Crystallography, X-Ray ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Models, Molecular ; Protein Conformation ; Protein Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-01-10
    Description: Cytokines such as interleukin-6 induce tyrosine and serine phosphorylation of Stat3 that results in activation of Stat3-responsive genes. We provide evidence that Stat3 is present in the mitochondria of cultured cells and primary tissues, including the liver and heart. In Stat3(-/-) cells, the activities of complexes I and II of the electron transport chain (ETC) were significantly decreased. We identified Stat3 mutants that selectively restored the protein's function as a transcription factor or its functions within the ETC. In mice that do not express Stat3 in the heart, there were also selective defects in the activities of complexes I and II of the ETC. These data indicate that Stat3 is required for optimal function of the ETC, which may allow it to orchestrate responses to cellular homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758306/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758306/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wegrzyn, Joanna -- Potla, Ramesh -- Chwae, Yong-Joon -- Sepuri, Naresh B V -- Zhang, Qifang -- Koeck, Thomas -- Derecka, Marta -- Szczepanek, Karol -- Szelag, Magdalena -- Gornicka, Agnieszka -- Moh, Akira -- Moghaddas, Shadi -- Chen, Qun -- Bobbili, Santha -- Cichy, Joanna -- Dulak, Jozef -- Baker, Darren P -- Wolfman, Alan -- Stuehr, Dennis -- Hassan, Medhat O -- Fu, Xin-Yuan -- Avadhani, Narayan -- Drake, Jennifer I -- Fawcett, Paul -- Lesnefsky, Edward J -- Larner, Andrew C -- CA098924/CA/NCI NIH HHS/ -- P01AG15885/AG/NIA NIH HHS/ -- R01 AI059710/AI/NIAID NIH HHS/ -- R01 AI059710-03/AI/NIAID NIH HHS/ -- R01 AI059710-04/AI/NIAID NIH HHS/ -- R01 CA098924/CA/NCI NIH HHS/ -- R01 CA098924-03/CA/NCI NIH HHS/ -- R01 CA098924-04/CA/NCI NIH HHS/ -- R01 CA098924-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Feb 6;323(5915):793-7. doi: 10.1126/science.1164551. Epub 2009 Jan 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19131594" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Respiration ; Cells, Cultured ; Electron Transport Complex I/metabolism ; Electron Transport Complex II/metabolism ; Homeostasis ; Mice ; Mitochondria/*metabolism ; Mitochondria, Heart/metabolism ; Mitochondria, Liver/metabolism ; Mitochondrial Membranes/metabolism ; NADH, NADPH Oxidoreductases/metabolism ; Oxidative Phosphorylation ; Phosphorylation ; Precursor Cells, B-Lymphoid/metabolism ; STAT3 Transcription Factor/chemistry/*metabolism ; Serine/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-09-17
    Description: The prediction of protein structure from amino acid sequence is a grand challenge of computational molecular biology. By using a combination of improved low- and high-resolution conformational sampling methods, improved atomically detailed potential functions that capture the jigsaw puzzle-like packing of protein cores, and high-performance computing, high-resolution structure prediction (〈1.5 angstroms) can be achieved for small protein domains (〈85 residues). The primary bottleneck to consistent high-resolution prediction appears to be conformational sampling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bradley, Philip -- Misura, Kira M S -- Baker, David -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1868-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Washington, Department of Biochemistry, and Howard Hughes Medical Institute, Box 357350, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16166519" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chemistry, Physical ; *Computational Biology ; Computer Simulation ; Hydrogen Bonding ; Models, Molecular ; Monte Carlo Method ; Physicochemical Phenomena ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry ; Sequence Alignment ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-02-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Salazar-Bravo, Jorge -- Phillips, Carleton J -- Bradley, Robert D -- Baker, Robert J -- Yates, Terry L -- Ruedas, Luis A -- New York, N.Y. -- Science. 2006 Feb 24;311(5764):1099-100; author reply 1099-100.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16497914" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chiroptera/*classification/*virology ; *Coronavirus ; *Disease Reservoirs ; *SARS Virus ; Severe Acute Respiratory Syndrome/epidemiology/transmission/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schaefer, Mark -- Baker, D James -- Gibbons, John H -- Groat, Charles G -- Kennedy, Donald -- Kennel, Charles F -- Rejeski, David -- New York, N.Y. -- Science. 2008 Jul 4;321(5885):44-5. doi: 10.1126/science.1160192.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18599760" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere ; Biodiversity ; Conservation of Natural Resources ; Ecology ; Fresh Water ; Geological Phenomena ; Geology ; Oceanography ; Oceans and Seas ; *Public Policy ; United States ; United States Government Agencies/*organization & administration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-09-20
    Description: FtsZ is an essential bacterial guanosine triphosphatase and homolog of mammalian beta-tubulin that polymerizes and assembles into a ring to initiate cell division. We have created a class of small synthetic antibacterials, exemplified by PC190723, which inhibits FtsZ and prevents cell division. PC190723 has potent and selective in vitro bactericidal activity against staphylococci, including methicillin- and multi-drug-resistant Staphylococcus aureus. The putative inhibitor-binding site of PC190723 was mapped to a region of FtsZ that is analogous to the Taxol-binding site of tubulin. PC190723 was efficacious in an in vivo model of infection, curing mice infected with a lethal dose of S. aureus. The data validate FtsZ as a target for antibacterial intervention and identify PC190723 as suitable for optimization into a new anti-staphylococcal therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haydon, David J -- Stokes, Neil R -- Ure, Rebecca -- Galbraith, Greta -- Bennett, James M -- Brown, David R -- Baker, Patrick J -- Barynin, Vladimir V -- Rice, David W -- Sedelnikova, Sveta E -- Heal, Jonathan R -- Sheridan, Joseph M -- Aiwale, Sachin T -- Chauhan, Pramod K -- Srivastava, Anil -- Taneja, Amit -- Collins, Ian -- Errington, Jeff -- Czaplewski, Lloyd G -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2008 Sep 19;321(5896):1673-5. doi: 10.1126/science.1159961.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Prolysis, Begbroke Science Park, Oxfordshire OX5 1PF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18801997" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Bacterial Agents/*pharmacology/therapeutic use ; Bacillus subtilis/chemistry/*drug effects/genetics ; Bacterial Proteins/*antagonists & inhibitors/chemistry/genetics/metabolism ; Binding Sites ; Cell Division/drug effects ; Crystallography, X-Ray ; Cytoskeletal Proteins/*antagonists & inhibitors/chemistry/genetics/metabolism ; Drug Resistance, Bacterial/genetics ; Drug Resistance, Multiple, Bacterial ; Ligands ; Methicillin Resistance ; Mice ; Microbial Sensitivity Tests ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Pyridines/chemistry/metabolism/*pharmacology/therapeutic use ; Staphylococcal Infections/*drug therapy ; Staphylococcus aureus/chemistry/*drug effects ; Thiazoles/chemistry/metabolism/*pharmacology/therapeutic use ; Tubulin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-07-19
    Description: The macroevolutionary events leading to neural innovations for social communication, such as vocalization, are essentially unexplored. Many fish vocalize during female courtship and territorial defense, as do amphibians, birds, and mammals. Here, we map the neural circuitry for vocalization in larval fish and show that the vocal network develops in a segment-like region across the most caudal hindbrain and rostral spinal cord. Taxonomic analysis demonstrates a highly conserved pattern between fish and all major lineages of vocal tetrapods. We propose that the vocal basis for acoustic communication among vertebrates evolved from an ancestrally shared developmental compartment already present in the early fishes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582147/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582147/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bass, Andrew H -- Gilland, Edwin H -- Baker, Robert -- R01 DC000092/DC/NIDCD NIH HHS/ -- R01 DC000092-33/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2008 Jul 18;321(5887):417-21. doi: 10.1126/science.1157632.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA. ahb3@cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18635807" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Batrachoidiformes/*anatomy & histology/growth & development/physiology ; *Biological Evolution ; Cerebellum/cytology/growth & development ; Motor Neurons/*cytology ; Nerve Net/*cytology/growth & development ; Neurons/*cytology ; Rhombencephalon/*cytology/growth & development ; Spinal Cord/*cytology/growth & development ; Vagus Nerve/cytology ; Vertebrates/anatomy & histology/growth & development/physiology ; *Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...