ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (7,638)
  • 2025-2025
  • 2010-2014  (2,004)
  • 2000-2004  (5,634)
Collection
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Daniau, Anne-Laure; Bartlein, Patrick J; Harrison, S P; Prentice, Iain Colin; Brewer, Simon; Friedlingstein, Pierre; Harrison-Prentice, T I; Inoue, J; Izumi, K; Marlon, Jennifer R; Mooney, Scott D; Power, Mitchell J; Stevenson, J; Tinner, Willy; Andric, M; Atanassova, J; Behling, Hermann; Black, M; Blarquez, O; Brown, K J; Carcaillet, C; Colhoun, Eric A; Colombaroli, Daniele; Davis, Basil A S; D'Costa, D; Dodson, John; Dupont, Lydie M; Eshetu, Z; Gavin, D G; Genries, A; Haberle, Simon G; Hallett, D J; Hope, Geoffrey; Horn, S P; Kassa, T G; Katamura, F; Kennedy, L M; Kershaw, A Peter; Krivonogov, S; Long, C; Magri, Donatella; Marinova, E; McKenzie, G Merna; Moreno, P I; Moss, Patrick T; Neumann, F H; Norstrom, E; Paitre, C; Rius, D; Roberts, Neil; Robinson, G S; Sasaki, N; Scott, Louis; Takahara, H; Terwilliger, V; Thevenon, Florian; Turner, R; Valsecchi, V G; Vannière, Boris; Walsh, M; Williams, N; Zhang, Yancheng (2012): Predictability of biomass burning in response to climate changes. Global Biogeochemical Cycles, 26(4), https://doi.org/10.1029/2011GB004249
    Publication Date: 2024-05-27
    Description: We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo- fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote-sensing observations of month-by-month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-05
    Description: This study is a first effort to compile the largest possible body of data available from different plankton databases as well as from individual published or unpublished datasets regarding diatom distribution in the world ocean. The data obtained originate from time series studies as well as spatial studies. This effort is supported by the Marine Ecosystem Data (MAREDAT) project, which aims at building consistent data sets for the main PFTs (Plankton Functional Types) in order to help validate biogeochemical ocean models by using converted C biomass from abundance data. Diatom abundance data were obtained from various research programs with the associated geolocation and date of collection, as well as with a taxonomic information ranging from group down to species. Minimum, maximum and average cell size information were mined from the literature for each taxonomic entry, and all abundance data were subsequently converted to biovolume and C biomass using the same methodology.
    Keywords: MAREMIP; MARine Ecosystem Model Intercomparison Project
    Type: Dataset
    Format: application/zip, 30.6 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Tréhu, Anne M; Long, Philip E; Torres, Marta E; Bohrmann, Gerhard; Rack, Frank R; Collett, Tim S; Goldberg, D S; Milkov, Alexei V; Riedel, Michael; Schultheiss, P; Bangs, N L; Barr, Samantha R; Borowski, Walter S; Claypool, George E; Delwiche, Mark E; Dickens, Gerald Roy; Gràcia, Eulàlia; Guerin, Gilles; Holland, M; Johnson, J E; Lee, Young-Joo; Liu, C-S; Su, Xin; Teichert, Barbara M A; Tomaru, Hitoshi; Vanneste, M; Watanabe, Mahito; Weinberger, J L (2004): Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204. Earth and Planetary Science Letters, 222(3-4), 845-862, https://doi.org/10.1016/j.epsl.2004.03.035
    Publication Date: 2024-01-09
    Description: Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30–40% of pore space or 20–26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally 〈2% of the pore space, although this estimate may increase by a factor of 2 when patchy zones of locally higher gas hydrate content are included in the calculation. These patchy zones are structurally and stratigraphically controlled, contain up to 20% hydrate in the pore space when averaged over zones ~10 m thick, and may occur in up to ~20% of the region imaged by 3D seismic data. This heterogeneous gas hydrate distribution is an important constraint on models of gas hydrate formation in marine sediments and the response of the sediments to tectonic and environmental change.
    Keywords: 204-1244B; 204-1244C; 204-1244E; 204-1245A; 204-1245B; 204-1245C; 204-1246A; 204-1246B; 204-1247A; 204-1247B; 204-1248A; 204-1248C; 204-1249A; 204-1249F; 204-1250A; 204-1250C; 204-1250D; 204-1251A; 204-1251B; 204-1251D; 204-1252A; Calculated; Comment; Comment 2 (continued); Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; DRILL; Drilling/drill rig; Elevation of event; Event label; Hydrate; Joides Resolution; Latitude of event; Leg204; Length, difference; Longitude of event; North Pacific Ocean; Number; Ocean Drilling Program; ODP; Recovery; Spacing; Temperature, difference
    Type: Dataset
    Format: text/tab-separated-values, 194 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Luo, Yawei; Doney, Scott C; Anderson, L A; Benavides, Mar; Berman-Frank, I; Bode, Antonio; Bonnet, S; Boström, Kjärstin H; Böttjer, D; Capone, D G; Carpenter, E J; Chen, Yaw-Lin; Church, Matthew J; Dore, John E; Falcón, Luisa I; Fernández, A; Foster, R A; Furuya, Ken; Gomez, Fernando; Gundersen, Kjell; Hynes, Annette M; Karl, David Michael; Kitajima, Satoshi; Langlois, Rebecca; LaRoche, Julie; Letelier, Ricardo M; Marañón, Emilio; McGillicuddy Jr, Dennis J; Moisander, Pia H; Moore, C Mark; Mouriño-Carballido, Beatriz; Mulholland, Margaret R; Needoba, Joseph A; Orcutt, Karen M; Poulton, Alex J; Rahav, Eyal; Raimbault, Patrick; Rees, Andrew; Riemann, Lasse; Shiozaki, Takuhei; Subramaniam, Ajit; Tyrrell, Toby; Turk-Kubo, Kendra A; Varela, Manuel; Villareal, Tracy A; Webb, Eric A; White, Angelicque E; Wu, Jingfeng; Zehr, Jonathan P (2012): Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth System Science Data, 4, 47-73, https://doi.org/10.5194/essd-4-47-2012
    Publication Date: 2023-03-27
    Description: The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. This is a gridded data product about diazotrophic organisms . There are 6 variables. Each variable is gridded on a dimension of 360 (longitude) * 180 (latitude) * 33 (depth) * 12 (month). The first group of 3 variables are: (1) number of biomass observations, (2) biomass, and (3) special nifH-gene-based biomass. The second group of 3 variables is same as the first group except that it only grids non-zero data. We have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling more than 11,000 direct field measurements including 3 sub-databases: (1) nitrogen fixation rates, (2) cyanobacterial diazotroph abundances from cell counts and (3) cyanobacterial diazotroph abundances from qPCR assays targeting nifH genes. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. Data are assigned to 3 groups including Trichodesmium, unicellular diazotrophic cyanobacteria (group A, B and C when applicable) and heterocystous cyanobacteria (Richelia and Calothrix). Total nitrogen fixation rates and diazotrophic biomass are calculated by summing the values from all the groups. Some of nitrogen fixation rates are whole seawater measurements and are used as total nitrogen fixation rates. Both volumetric and depth-integrated values were reported. Depth-integrated values are also calculated for those vertical profiles with values at 3 or more depths.
    Keywords: MAREMIP; MARine Ecosystem Model Intercomparison Project
    Type: Dataset
    Format: application/zip, 1.7 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-06-27
    Keywords: AUF87; Bicarbonate; Cadmium; Chloride; Chromium; Cobalt; Copper; DDGA; DEPTH, ice/snow; DRILL; Drilling/drill rig; Iron; Layer thickness; Lead; Lithium; Manganese; Measured; Nickel; Nordaustlandet, Svalbard; Quaternary Environment of the Eurasian North; QUEEN; Sampling/drilling ice; Sodium ion; Strontium; Sulfate; Zinc
    Type: Dataset
    Format: text/tab-separated-values, 4598 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gruber, Thomas; Bamber, Jonathan L; Bierkens, Marc F P; Dobslaw, Henryk; Murböck, M; Thomas, M; van Beek, L P H; van Dam, T; Vermeersen, L L A; Visser, P N A M (2011): Simulation of the time-variable gravity field by means of coupled geophysical models. Earth System Science Data, 3(1), 19-35, https://doi.org/10.5194/essd-3-19-2011
    Publication Date: 2023-09-02
    Description: Time variable gravity fields, reflecting variations of mass distribution in the system Earth is one of the key parameters to understand the changing Earth. Mass variations are caused either by redistribution of mass in, on or above the Earth's surface or by geophysical processes in the Earth's interior. The first set of observations of monthly variations of the Earth gravity field was provided by the US/German GRACE satellite mission beginning in 2002. This mission is still providing valuable information to the science community. However, as GRACE has outlived its expected lifetime, the geoscience community is currently seeking successor missions in order to maintain the long time series of climate change that was begun by GRACE. Several studies on science requirements and technical feasibility have been conducted in the recent years. These studies required a realistic model of the time variable gravity field in order to perform simulation studies on sensitivity of satellites and their instrumentation. This was the primary reason for the European Space Agency (ESA) to initiate a study on ''Monitoring and Modelling individual Sources of Mass Distribution and Transport in the Earth System by Means of Satellites''. The goal of this interdisciplinary study was to create as realistic as possible simulated time variable gravity fields based on coupled geophysical models, which could be used in the simulation processes in a controlled environment. For this purpose global atmosphere, ocean, continental hydrology and ice models were used. The coupling was performed by using consistent forcing throughout the models and by including water flow between the different domains of the Earth system. In addition gravity field changes due to solid Earth processes like continuous glacial isostatic adjustment (GIA) and a sudden earthquake with co-seismic and post-seismic signals were modelled. All individual model results were combined and converted to gravity field spherical harmonic series, which is the quantity commonly used to describe the Earth's global gravity field. The result of this study is a twelve-year time-series of 6-hourly time variable gravity field spherical harmonics up to degree and order 180 corresponding to a global spatial resolution of 1 degree in latitude and longitude. In this paper, we outline the input data sets and the process of combining these data sets into a coherent model of temporal gravity field changes. The resulting time series was used in some follow-on studies and is available to anybody interested.
    Keywords: DATE/TIME; File name; Method comment; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 180 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-11-08
    Keywords: 672; AGE; Calcium/Titanium ratio; Calculated; Center for Marine Environmental Sciences; DEPTH, sediment/rock; GeoB10706-4; Gravity corer (Kiel type); Gulf of Taranto; MARUM; POS339; Poseidon; SL
    Type: Dataset
    Format: text/tab-separated-values, 483 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-11-08
    Keywords: 64PE315; AGE; Calcium/Titanium ratio; Calculated; Center for Marine Environmental Sciences; DEPTH, sediment/rock; MARUM; MOCCHA; MP49PC; PC; Pelagia; Piston corer
    Type: Dataset
    Format: text/tab-separated-values, 944 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-11-08
    Keywords: 64PE297; AGE; Calcium/Titanium ratio; Calculated; Center for Marine Environmental Sciences; DEPTH, sediment/rock; DP30PC; MARUM; PC; Pelagia; Piston corer
    Type: Dataset
    Format: text/tab-separated-values, 813 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-11-08
    Keywords: 64PE297; AGE; Barium/Titanium ratio; Bromine/Titanium ratio; Calcium/Titanium ratio; Calculated; Center for Marine Environmental Sciences; DEPTH, sediment/rock; DP30PC; Iron/Titanium ratio; MARUM; PC; Pelagia; Piston corer; Potassium/Titanium ratio; Silicon/Titanium ratio; Strontium/Calcium ratio; Zirconium/Titanium ratio
    Type: Dataset
    Format: text/tab-separated-values, 6521 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...