ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-16
    Description: A unique assemblage of 28 hominin individuals, found in Sima de los Huesos in the Sierra de Atapuerca in Spain, has recently been dated to approximately 430,000 years ago. An interesting question is how these Middle Pleistocene hominins were related to those who lived in the Late Pleistocene epoch, in particular to Neanderthals in western Eurasia and to Denisovans, a sister group of Neanderthals so far known only from southern Siberia. While the Sima de los Huesos hominins share some derived morphological features with Neanderthals, the mitochondrial genome retrieved from one individual from Sima de los Huesos is more closely related to the mitochondrial DNA of Denisovans than to that of Neanderthals. However, since the mitochondrial DNA does not reveal the full picture of relationships among populations, we have investigated DNA preservation in several individuals found at Sima de los Huesos. Here we recover nuclear DNA sequences from two specimens, which show that the Sima de los Huesos hominins were related to Neanderthals rather than to Denisovans, indicating that the population divergence between Neanderthals and Denisovans predates 430,000 years ago. A mitochondrial DNA recovered from one of the specimens shares the previously described relationship to Denisovan mitochondrial DNAs, suggesting, among other possibilities, that the mitochondrial DNA gene pool of Neanderthals turned over later in their history.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, Matthias -- Arsuaga, Juan-Luis -- de Filippo, Cesare -- Nagel, Sarah -- Aximu-Petri, Ayinuer -- Nickel, Birgit -- Martinez, Ignacio -- Gracia, Ana -- Bermudez de Castro, Jose Maria -- Carbonell, Eudald -- Viola, Bence -- Kelso, Janet -- Prufer, Kay -- Paabo, Svante -- England -- Nature. 2016 Mar 24;531(7595):504-7. doi: 10.1038/nature17405. Epub 2016 Mar 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany. ; Centro de Investigacion Sobre la Evolucion y Comportamiento Humanos, Universidad Complutense de Madrid-Instituto de Salud Carlos III, 28029 Madrid, Spain. ; Departamento de Paleontologia, Facultad de Ciencias Geologicas, Universidad Complutense de Madrid, 28040 Madrid, Spain. ; Area de Paleontologia, Departamento de Geografia y Geologia, Universidad de Alcala, Alcala de Henares, 28871 Madrid, Spain. ; Centro Nacional de Investigacion sobre la Evolucion Humana, Paseo Sierra de Atapuerca, 09002 Burgos, Spain. ; Institut Catala de Paleoecologia Humana i Evolucio Social, C/Marcel.li Domingo s/n (Edifici W3), Campus Sescelades, 43007 Tarragona, Spain. ; Area de Prehistoria, Departament d'Historia i Historia de l'Art, Universitat Rovira i Virgili, Facultat de Lletres, Avinguda de Catalunya, 35, 43002 Tarragona, Spain. ; Department of Anthropology, University of Toronto, 19 Russell Street, Toronto, Ontario M5S 2S2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26976447" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; DNA, Mitochondrial/genetics ; Fossils ; Genome, Mitochondrial/genetics ; Hominidae/classification/*genetics ; Male ; Neanderthals/classification/genetics ; *Phylogeny ; Sequence Alignment ; Spain
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-26
    Description: Latimeret al (Reports, 10 July 2015, p. 184) claim that during perceptual decision formation, parietal neurons undergo one-time, discrete steps in firing rate instead of gradual changes that represent the accumulation of evidence. However, that conclusion rests on unsubstantiated assumptions about the time window of evidence accumulation, and their stepping model cannot explain existing data as effectively as evidence-accumulation models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shadlen, Michael N -- Kiani, Roozbeh -- Newsome, William T -- Gold, Joshua I -- Wolpert, Daniel M -- Zylberberg, Ariel -- Ditterich, Jochen -- de Lafuente, Victor -- Yang, Tianming -- Roitman, Jamie -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1406. doi: 10.1126/science.aad3242.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI) and Department of Neuroscience, Columbia University, New York, NY, USA. shadlen@columbia.edu. ; Center for Neural Science, New York University, New York, NY, USA. ; HHMI and Stanford University, Stanford, CA, USA. ; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA. ; Department of Engineering, University of Cambridge, Cambridge, UK. ; HHMI and Department of Neuroscience, Columbia University, New York, NY, USA. ; Center for Neuroscience and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA. ; Institute for Neuroscience, National Autonomous University of Mexico, Queretaro, Mexico. ; Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China. ; Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013723" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Choice Behavior/*physiology ; Decision Making/*physiology ; Male ; Parietal Lobe/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-19
    Description: Sanchez et al.'s textbook k-anonymization example does not prove, or even suggest, that location and other big-data data sets can be anonymized and of general use. The synthetic data set that they "successfully anonymize" bears no resemblance to modern high-dimensional data sets on which their methods fail. Moving forward, deidentification should not be considered a useful basis for policy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Montjoye, Yves-Alexandre -- Pentland, Alex Sandy -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):1274. doi: 10.1126/science.aaf1578.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Harvard University, Institute for Quantitative Social Science, Cambridge, MA 02138, USA. yvesalexandre@demontjoye.com. ; Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26989244" target="_blank"〉PubMed〈/a〉
    Keywords: *Commerce ; *Data Collection ; Female ; Humans ; *Information Dissemination ; Male ; *Privacy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-12
    Description: Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zanoni, Paolo -- Khetarpal, Sumeet A -- Larach, Daniel B -- Hancock-Cerutti, William F -- Millar, John S -- Cuchel, Marina -- DerOhannessian, Stephanie -- Kontush, Anatol -- Surendran, Praveen -- Saleheen, Danish -- Trompet, Stella -- Jukema, J Wouter -- De Craen, Anton -- Deloukas, Panos -- Sattar, Naveed -- Ford, Ian -- Packard, Chris -- Majumder, Abdullah al Shafi -- Alam, Dewan S -- Di Angelantonio, Emanuele -- Abecasis, Goncalo -- Chowdhury, Rajiv -- Erdmann, Jeanette -- Nordestgaard, Borge G -- Nielsen, Sune F -- Tybjaerg-Hansen, Anne -- Schmidt, Ruth Frikke -- Kuulasmaa, Kari -- Liu, Dajiang J -- Perola, Markus -- Blankenberg, Stefan -- Salomaa, Veikko -- Mannisto, Satu -- Amouyel, Philippe -- Arveiler, Dominique -- Ferrieres, Jean -- Muller-Nurasyid, Martina -- Ferrario, Marco -- Kee, Frank -- Willer, Cristen J -- Samani, Nilesh -- Schunkert, Heribert -- Butterworth, Adam S -- Howson, Joanna M M -- Peloso, Gina M -- Stitziel, Nathan O -- Danesh, John -- Kathiresan, Sekar -- Rader, Daniel J -- CHD Exome+ Consortium -- CARDIoGRAM Exome Consortium -- Global Lipids Genetics Consortium -- R01 DK089256/DK/NIDDK NIH HHS/ -- R01 HL117078/HL/NHLBI NIH HHS/ -- TL1 RR024133/RR/NCRR NIH HHS/ -- TL1R000138/PHS HHS/ -- TL1RR024133/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1166-71. doi: 10.1126/science.aad3517.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. INSERM UMR 1166 ICAN, Universite Pierre et Marie Curie Paris 6, Hopital de la Pitie, Paris, France. ; INSERM UMR 1166 ICAN, Universite Pierre et Marie Curie Paris 6, Hopital de la Pitie, Paris, France. ; Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. ; Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Centre for Non-Communicable Diseases, Karachi, Pakistan. ; Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands. Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands. ; Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands. The Interuniversity Cardiology Institute of the Netherlands, Utrecht, Netherlands. ; Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands. ; Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK. ; Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK. ; Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK. ; Glasgow Clinical Research Facility, Western Infirmary, Glasgow, UK. ; National Institute of Cardiovascular Diseases, Sher-e-Bangla Nagar, Dhaka, Bangladesh. ; International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh. ; Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA. ; Institute for Integrative and Experimental Genomics, University of Lubeck, Lubeck 23562, Germany. ; Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark. ; Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark. ; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark. ; Department of Health, National Institute for Health and Welfare, Helsinki, Finland. ; Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA. ; Department of Health, National Institute for Health and Welfare, Helsinki, Finland. Institute of Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland. ; Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany. University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ; Department of Epidemiology and Public Health, Institut Pasteur de Lille, Lille, France. ; Department of Epidemiology and Public Health, University of Strasbourg, Strasbourg, France. ; Department of Epidemiology, Toulouse University-CHU Toulouse, Toulouse, France. ; Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen-German Research Center for Environmental Health, Neuherberg, Germany. Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany. ; Research Centre in Epidemiology and Preventive Medicine, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy. ; UKCRC Centre of Excellence for Public Health, Queens University, Belfast, Northern Ireland. ; Department of Computational Medicine and Bioinformatics, Department of Human Genetics, and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA. ; Department of Cardiovascular Sciences, University of Leicester, Leicester, UK. National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Glenfield Hotel, Leicester, UK. ; Deutsches Herzzentrum Munchen, Technische Universitat Munchen, Munich, Germany. ; Broad Institute and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA. ; Department of Medicine, Division of Cardiology, Department of Genetics, and the McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK. ; Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. rader@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26965621" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Amino Acid Substitution ; Animals ; Cholesterol, HDL/*blood ; Coronary Disease/*blood/*genetics ; DNA Mutational Analysis ; Female ; Genetic Variation ; Heterozygote ; Homozygote ; Humans ; Leucine/genetics ; Male ; Mice ; Middle Aged ; Proline/genetics ; Protein Processing, Post-Translational ; Risk ; Scavenger Receptors, Class B/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-23
    Description: Consolation behavior toward distressed others is common in humans and great apes, yet our ability to explore the biological mechanisms underlying this behavior is limited by its apparent absence in laboratory animals. Here, we provide empirical evidence that a rodent species, the highly social and monogamous prairie vole (Microtus ochrogaster), greatly increases partner-directed grooming toward familiar conspecifics (but not strangers) that have experienced an unobserved stressor, providing social buffering. Prairie voles also match the fear response, anxiety-related behaviors, and corticosterone increase of the stressed cagemate, suggesting an empathy mechanism. Exposure to the stressed cagemate increases activity in the anterior cingulate cortex, and oxytocin receptor antagonist infused into this region abolishes the partner-directed response, showing conserved neural mechanisms between prairie vole and human.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737486/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737486/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burkett, J P -- Andari, E -- Johnson, Z V -- Curry, D C -- de Waal, F B M -- Young, L J -- 1P50MH100023/MH/NIMH NIH HHS/ -- F31 MH102911-01/MH/NIMH NIH HHS/ -- F32 HD008702/HD/NICHD NIH HHS/ -- P50 MH100023/MH/NIMH NIH HHS/ -- P51 OD011132/OD/NIH HHS/ -- P51OD011132/OD/NIH HHS/ -- R01 MH096983/MH/NIMH NIH HHS/ -- R01MH096983/MH/NIMH NIH HHS/ -- T32GM08605-10/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 22;351(6271):375-8. doi: 10.1126/science.aac4785.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA, USA. Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA. Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA. jpburke@emory.edu lyoun03@emory.edu. ; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA, USA. Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA. Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA. ; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA. Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA. ; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA. Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA. Utrecht University, Utrecht, Netherlands. ; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA, USA. Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA. Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA. Department of Psychiatry, School of Medicine, Emory University, Atlanta, GA, USA. jpburke@emory.edu lyoun03@emory.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26798013" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anxiety/psychology ; Anxiety, Separation/psychology ; Arvicolinae/blood/physiology/*psychology ; Corticosterone/blood ; Emotions/physiology ; Female ; *Helping Behavior ; Injections, Intraventricular ; Male ; Oxytocin/administration & dosage/*physiology ; Stress, Psychological/psychology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-04-29
    Description: The meaning of language is represented in regions of the cerebral cortex collectively known as the 'semantic system'. However, little of the semantic system has been mapped comprehensively, and the semantic selectivity of most regions is unknown. Here we systematically map semantic selectivity across the cortex using voxel-wise modelling of functional MRI (fMRI) data collected while subjects listened to hours of narrative stories. We show that the semantic system is organized into intricate patterns that seem to be consistent across individuals. We then use a novel generative model to create a detailed semantic atlas. Our results suggest that most areas within the semantic system represent information about specific semantic domains, or groups of related concepts, and our atlas shows which domains are represented in each area. This study demonstrates that data-driven methods--commonplace in studies of human neuroanatomy and functional connectivity--provide a powerful and efficient means for mapping functional representations in the brain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852309/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852309/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huth, Alexander G -- de Heer, Wendy A -- Griffiths, Thomas L -- Theunissen, Frederic E -- Gallant, Jack L -- EY019684/EY/NEI NIH HHS/ -- R01 EY019684/EY/NEI NIH HHS/ -- England -- Nature. 2016 Apr 28;532(7600):453-8. doi: 10.1038/nature17637.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA. ; Department of Psychology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27121839" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Auditory Perception ; *Brain Mapping ; Cerebral Cortex/*anatomy & histology/*physiology ; Female ; Humans ; Magnetic Resonance Imaging ; Male ; Narration ; Principal Component Analysis ; Reproducibility of Results ; *Semantics ; *Speech
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-05-07
    Description: Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4(+) and CD8(+) T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876960/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876960/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruibal, Paula -- Oestereich, Lisa -- Ludtke, Anja -- Becker-Ziaja, Beate -- Wozniak, David M -- Kerber, Romy -- Korva, Misa -- Cabeza-Cabrerizo, Mar -- Bore, Joseph A -- Koundouno, Fara Raymond -- Duraffour, Sophie -- Weller, Romy -- Thorenz, Anja -- Cimini, Eleonora -- Viola, Domenico -- Agrati, Chiara -- Repits, Johanna -- Afrough, Babak -- Cowley, Lauren A -- Ngabo, Didier -- Hinzmann, Julia -- Mertens, Marc -- Vitoriano, Ines -- Logue, Christopher H -- Boettcher, Jan Peter -- Pallasch, Elisa -- Sachse, Andreas -- Bah, Amadou -- Nitzsche, Katja -- Kuisma, Eeva -- Michel, Janine -- Holm, Tobias -- Zekeng, Elsa-Gayle -- Garcia-Dorival, Isabel -- Wolfel, Roman -- Stoecker, Kilian -- Fleischmann, Erna -- Strecker, Thomas -- Di Caro, Antonino -- Avsic-Zupanc, Tatjana -- Kurth, Andreas -- Meschi, Silvia -- Mely, Stephane -- Newman, Edmund -- Bocquin, Anne -- Kis, Zoltan -- Kelterbaum, Anne -- Molkenthin, Peter -- Carletti, Fabrizio -- Portmann, Jasmine -- Wolff, Svenja -- Castilletti, Concetta -- Schudt, Gordian -- Fizet, Alexandra -- Ottowell, Lisa J -- Herker, Eva -- Jacobs, Thomas -- Kretschmer, Birte -- Severi, Ettore -- Ouedraogo, Nobila -- Lago, Mar -- Negredo, Anabel -- Franco, Leticia -- Anda, Pedro -- Schmiedel, Stefan -- Kreuels, Benno -- Wichmann, Dominic -- Addo, Marylyn M -- Lohse, Ansgar W -- De Clerck, Hilde -- Nanclares, Carolina -- Jonckheere, Sylvie -- Van Herp, Michel -- Sprecher, Armand -- Xiaojiang, Gao -- Carrington, Mary -- Miranda, Osvaldo -- Castro, Carlos M -- Gabriel, Martin -- Drury, Patrick -- Formenty, Pierre -- Diallo, Boubacar -- Koivogui, Lamine -- Magassouba, N'Faly -- Carroll, Miles W -- Gunther, Stephan -- Munoz-Fontela, Cesar -- HHSN261200800001E/PHS HHS/ -- Z01 BC010791-01/Intramural NIH HHS/ -- Z01 BC010791-02/Intramural NIH HHS/ -- Z01 BC010792-01/Intramural NIH HHS/ -- England -- Nature. 2016 May 5;533(7601):100-4. doi: 10.1038/nature17949.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany. ; Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany. ; German Center for Infection Research (DZIF), Partner Sites Hamburg, Munich, and Marburg, Germany. ; European Mobile Laboratory Consortium, Bernhard-Nocht-Institute for Tropical Medicine, D-20359 Hamburg, Germany. ; Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia. ; Institute of Experimental Virology, Twincore, Center for Experimental and Clinical Infection Research, 30625 Hannover, Germany. ; Hannover Medical School, 30625 Hannover, Germany. ; National Institute for Infectious Diseases 'Lazzaro Spallanzani', 00149 Rome, Italy. ; Public Health England, Porton Down, Salisbury SP4 0JG, UK. ; Public Health England, Colindale Ave, London NW9 5EQ, UK. ; Robert Koch Institute, 13353 Berlin, Germany. ; Friedrich Loeffler Institute, 17493 Greifswald-Island of Riems, Germany. ; Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland. ; Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK. ; Bundeswehr Institute of Microbiology, 80937 Munich, Germany. ; Institute of Virology, Philipps University, 35043 Marburg, Germany. ; Laboratoire P4-Jean Merieux, US003 INSERM, 69365 Lyon, France. ; National Center for Epidemiology, Hungarian National Biosafety Laboratory, H1097 Budapest, Hungary. ; European Centre for Disease Prevention and Control, 171 65 Solna, Sweden. ; Federal Office for Civil Protection, CH-3700 Spiez, Switzerland. ; Unite de Biologie des Infections Virales Emergentes, Institut Pasteur, 69365 Lyon, France. ; Eurice, European Research and Project Office, 10115 Berlin, Germany. ; Infectious Diseases Unit, Internal Medicine Service, Hospital La Paz, 28046 Madrid, Spain. ; National Center of Microbiology, Institute of Health 'Carlos III', 28220 Madrid, Spain. ; University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany. ; Medecins sans Frontieres, B-1050 Brussels, Belgium. ; Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA. ; Hospital Militar Central Dr. Carlos J. Finlay, 11400 Havana, Cuba. ; World Health Organization, 1211 Geneva 27, Switzerland. ; Institut National de Sante Publique, 2101 Conakry, Guinea. ; Universite Gamal Abdel Nasser de Conakry, CHU Donka, 2101 Conakry, Guinea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27147028" target="_blank"〉PubMed〈/a〉
    Keywords: CTLA-4 Antigen/metabolism ; Ebolavirus/*immunology ; Female ; Flow Cytometry ; Guinea/epidemiology ; Hemorrhagic Fever, Ebola/*immunology/mortality/*physiopathology ; Humans ; Inflammation Mediators/immunology ; Longitudinal Studies ; Lymphocyte Activation ; Male ; Patient Discharge ; Programmed Cell Death 1 Receptor/metabolism ; Survivors ; T-Lymphocytes/*immunology/metabolism ; Viral Load
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-02-11
    Description: The enteric nervous system (ENS) is the largest component of the autonomic nervous system, with neuron numbers surpassing those present in the spinal cord. The ENS has been called the 'second brain' given its autonomy, remarkable neurotransmitter diversity and complex cytoarchitecture. Defects in ENS development are responsible for many human disorders including Hirschsprung disease (HSCR). HSCR is caused by the developmental failure of ENS progenitors to migrate into the gastrointestinal tract, particularly the distal colon. Human ENS development remains poorly understood owing to the lack of an easily accessible model system. Here we demonstrate the efficient derivation and isolation of ENS progenitors from human pluripotent stem (PS) cells, and their further differentiation into functional enteric neurons. ENS precursors derived in vitro are capable of targeted migration in the developing chick embryo and extensive colonization of the adult mouse colon. The in vivo engraftment and migration of human PS-cell-derived ENS precursors rescue disease-related mortality in HSCR mice (Ednrb(s-l/s-l)), although the mechanism of action remains unclear. Finally, EDNRB-null mutant ENS precursors enable modelling of HSCR-related migration defects, and the identification of pepstatin A as a candidate therapeutic target. Our study establishes the first, to our knowledge, human PS-cell-based platform for the study of human ENS development, and presents cell- and drug-based strategies for the treatment of HSCR.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846424/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846424/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fattahi, Faranak -- Steinbeck, Julius A -- Kriks, Sonja -- Tchieu, Jason -- Zimmer, Bastian -- Kishinevsky, Sarah -- Zeltner, Nadja -- Mica, Yvonne -- El-Nachef, Wael -- Zhao, Huiyong -- de Stanchina, Elisa -- Gershon, Michael D -- Grikscheit, Tracy C -- Chen, Shuibing -- Studer, Lorenz -- DP2 DK098093-01/DK/NIDDK NIH HHS/ -- NS15547/NS/NINDS NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 NS015547/NS/NINDS NIH HHS/ -- England -- Nature. 2016 Mar 3;531(7592):105-9. doi: 10.1038/nature16951. Epub 2016 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Center for Stem Cell Biology, New York, New York 10065, USA. ; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York 10065, USA. ; Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA. ; Molecular Pharmacology Program, New York, New York 10065, USA. ; Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA. ; Children's Hospital Los Angeles, Pediatric Surgery, Los Angeles, California 90027, USA. ; Department of Surgery, Weill Medical College of Cornell University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26863197" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Cell Differentiation ; Cell Line ; *Cell Lineage ; Cell Movement ; Cell Separation ; *Cell- and Tissue-Based Therapy/methods ; Chick Embryo ; Colon/drug effects/pathology ; Disease Models, Animal ; Drug Discovery/*methods ; Enteric Nervous System/*pathology ; Female ; Gastrointestinal Tract/drug effects/pathology ; Hirschsprung Disease/*drug therapy/*pathology/therapy ; Humans ; Male ; Mice ; Neurons/drug effects/*pathology ; Pepstatins/metabolism ; Pluripotent Stem Cells/pathology ; Receptor, Endothelin B/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-02-11
    Description: Mammalian Wnt proteins are believed to act as short-range signals, yet have not been previously visualized in vivo. Self-renewal, proliferation and differentiation are coordinated along a putative Wnt gradient in the intestinal crypt. Wnt3 is produced specifically by Paneth cells. Here we have generated an epitope-tagged, functional Wnt3 knock-in allele. Wnt3 covers basolateral membranes of neighbouring stem cells. In intestinal organoids, Wnt3-transfer involves direct contact between Paneth cells and stem cells. Plasma membrane localization requires surface expression of Frizzled receptors, which in turn is regulated by the transmembrane E3 ligases Rnf43/Znrf3 and their antagonists Lgr4-5/R-spondin. By manipulating Wnt3 secretion and by arresting stem-cell proliferation, we demonstrate that Wnt3 mainly travels away from its source in a cell-bound manner through cell division, and not through diffusion. We conclude that stem-cell membranes constitute a reservoir for Wnt proteins, while Frizzled receptor turnover and 'plasma membrane dilution' through cell division shape the epithelial Wnt3 gradient.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farin, Henner F -- Jordens, Ingrid -- Mosa, Mohammed H -- Basak, Onur -- Korving, Jeroen -- Tauriello, Daniele V F -- de Punder, Karin -- Angers, Stephane -- Peters, Peter J -- Maurice, Madelon M -- Clevers, Hans -- England -- Nature. 2016 Feb 18;530(7590):340-3. doi: 10.1038/nature16937. Epub 2016 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584CT Utrecht, the Netherlands. ; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany. ; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany. ; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands. ; The Maastricht Multimodal Molecular Imaging institute, Maastricht University, 6229ER Maastricht, the Netherlands. ; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26863187" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Cell Adhesion ; Cell Division ; Cell Membrane/*metabolism ; Diffusion ; Female ; Frizzled Receptors/metabolism ; Gene Knock-In Techniques ; Intercellular Signaling Peptides and Proteins/metabolism ; Intestinal Mucosa/*cytology ; Male ; Mice ; Organoids/cytology/metabolism ; Paneth Cells/cytology/metabolism ; Receptors, G-Protein-Coupled/metabolism ; *Stem Cell Niche ; Stem Cells/*cytology/*metabolism ; Ubiquitin-Protein Ligases/metabolism ; *Wnt Signaling Pathway ; Wnt3 Protein/genetics/*metabolism/secretion
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-24
    Description: Endoplasmic reticulum (ER) stress is a major contributor to inflammatory diseases, such as Crohn disease and type 2 diabetes. ER stress induces the unfolded protein response, which involves activation of three transmembrane receptors, ATF6, PERK and IRE1alpha. Once activated, IRE1alpha recruits TRAF2 to the ER membrane to initiate inflammatory responses via the NF-kappaB pathway. Inflammation is commonly triggered when pattern recognition receptors (PRRs), such as Toll-like receptors or nucleotide-binding oligomerization domain (NOD)-like receptors, detect tissue damage or microbial infection. However, it is not clear which PRRs have a major role in inducing inflammation during ER stress. Here we show that NOD1 and NOD2, two members of the NOD-like receptor family of PRRs, are important mediators of ER-stress-induced inflammation in mouse and human cells. The ER stress inducers thapsigargin and dithiothreitol trigger production of the pro-inflammatory cytokine IL-6 in a NOD1/2-dependent fashion. Inflammation and IL-6 production triggered by infection with Brucella abortus, which induces ER stress by injecting the type IV secretion system effector protein VceC into host cells, is TRAF2, NOD1/2 and RIP2-dependent and can be reduced by treatment with the ER stress inhibitor tauroursodeoxycholate or an IRE1alpha kinase inhibitor. The association of NOD1 and NOD2 with pro-inflammatory responses induced by the IRE1alpha/TRAF2 signalling pathway provides a novel link between innate immunity and ER-stress-induced inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869892/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869892/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keestra-Gounder, A Marijke -- Byndloss, Mariana X -- Seyffert, Nubia -- Young, Briana M -- Chavez-Arroyo, Alfredo -- Tsai, April Y -- Cevallos, Stephanie A -- Winter, Maria G -- Pham, Oanh H -- Tiffany, Connor R -- de Jong, Maarten F -- Kerrinnes, Tobias -- Ravindran, Resmi -- Luciw, Paul A -- McSorley, Stephen J -- Baumler, Andreas J -- Tsolis, Renee M -- AI044170/AI/NIAID NIH HHS/ -- AI076246/AI/NIAID NIH HHS/ -- AI076278/AI/NIAID NIH HHS/ -- AI096528/AI/NIAID NIH HHS/ -- AI109799/AI/NIAID NIH HHS/ -- AI112258/AI/NIAID NIH HHS/ -- AI117303/AI/NIAID NIH HHS/ -- GM056765/GM/NIGMS NIH HHS/ -- R01 AI044170/AI/NIAID NIH HHS/ -- R01 AI076246/AI/NIAID NIH HHS/ -- R01 AI076278/AI/NIAID NIH HHS/ -- R01 AI096528/AI/NIAID NIH HHS/ -- R01 AI109799/AI/NIAID NIH HHS/ -- R21 AI112258/AI/NIAID NIH HHS/ -- R21 AI117303/AI/NIAID NIH HHS/ -- R25 GM056765/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Apr 21;532(7599):394-7. doi: 10.1038/nature17631. Epub 2016 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, California 95616, USA. ; Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of California at Davis, One Shields Ave, Davis, California 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27007849" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Outer Membrane Proteins/metabolism ; Brucella abortus/immunology/pathogenicity ; Cell Line ; Dithiothreitol/pharmacology ; Endoplasmic Reticulum/drug effects/pathology ; *Endoplasmic Reticulum Stress/drug effects ; Endoribonucleases/antagonists & inhibitors ; Female ; Humans ; Immunity, Innate ; Inflammation/chemically induced/*metabolism ; Interleukin-6/biosynthesis ; Male ; Mice ; Mice, Inbred C57BL ; NF-kappa B/metabolism ; Nod1 Signaling Adaptor Protein/immunology/*metabolism ; Nod2 Signaling Adaptor Protein/immunology/*metabolism ; Protein-Serine-Threonine Kinases/antagonists & inhibitors ; Receptors, Pattern Recognition/metabolism ; *Signal Transduction/drug effects ; TNF Receptor-Associated Factor 2/metabolism ; Taurochenodeoxycholic Acid/pharmacology ; Thapsigargin/pharmacology ; Unfolded Protein Response/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...