ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-03-05
    Description: Recognition of modified histones by 'reader' proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific 'Ser 31' residue in a composite pocket formed by the tandem bromo-PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wen, Hong -- Li, Yuanyuan -- Xi, Yuanxin -- Jiang, Shiming -- Stratton, Sabrina -- Peng, Danni -- Tanaka, Kaori -- Ren, Yongfeng -- Xia, Zheng -- Wu, Jun -- Li, Bing -- Barton, Michelle C -- Li, Wei -- Li, Haitao -- Shi, Xiaobing -- CA016672/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- R01 GM090077/GM/NIGMS NIH HHS/ -- R01 HG007538/HG/NHGRI NIH HHS/ -- R01GM090077/GM/NIGMS NIH HHS/ -- R01HG007538/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Apr 10;508(7495):263-8. doi: 10.1038/nature13045. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3]. ; 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China [3]. ; 1] Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA [2]. ; Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China. ; Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3] Genes and Development Graduate Program, The University of Texas Graduate School of Biomedical Sciences, Houston, Teaxs 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590075" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Breast Neoplasms/*genetics/metabolism/*pathology ; Carrier Proteins/chemistry/*metabolism ; Chromatin/genetics/metabolism ; Co-Repressor Proteins/chemistry/metabolism ; Crystallography, X-Ray ; Disease-Free Survival ; Female ; Gene Expression Regulation, Neoplastic/genetics ; Histones/chemistry/*metabolism ; Humans ; Lysine/*metabolism ; Methylation ; Mice ; Mice, Nude ; Models, Molecular ; Molecular Sequence Data ; Oncogenes/genetics ; Prognosis ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA Polymerase II/*metabolism ; Substrate Specificity ; *Transcription Elongation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-03-29
    Description: Oesophageal cancer is one of the most aggressive cancers and is the sixth leading cause of cancer death worldwide. Approximately 70% of global oesophageal cancer cases occur in China, with oesophageal squamous cell carcinoma (ESCC) being the histopathological form in the vast majority of cases (〉90%). Currently, there are limited clinical approaches for the early diagnosis and treatment of ESCC, resulting in a 10% five-year survival rate for patients. However, the full repertoire of genomic events leading to the pathogenesis of ESCC remains unclear. Here we describe a comprehensive genomic analysis of 158 ESCC cases, as part of the International Cancer Genome Consortium research project. We conducted whole-genome sequencing in 17 ESCC cases and whole-exome sequencing in 71 cases, of which 53 cases, plus an additional 70 ESCC cases not used in the whole-genome and whole-exome sequencing, were subjected to array comparative genomic hybridization analysis. We identified eight significantly mutated genes, of which six are well known tumour-associated genes (TP53, RB1, CDKN2A, PIK3CA, NOTCH1, NFE2L2), and two have not previously been described in ESCC (ADAM29 and FAM135B). Notably, FAM135B is identified as a novel cancer-implicated gene as assayed for its ability to promote malignancy of ESCC cells. Additionally, MIR548K, a microRNA encoded in the amplified 11q13.3-13.4 region, is characterized as a novel oncogene, and functional assays demonstrate that MIR548K enhances malignant phenotypes of ESCC cells. Moreover, we have found that several important histone regulator genes (MLL2 (also called KMT2D), ASH1L, MLL3 (KMT2C), SETD1B, CREBBP and EP300) are frequently altered in ESCC. Pathway assessment reveals that somatic aberrations are mainly involved in the Wnt, cell cycle and Notch pathways. Genomic analyses suggest that ESCC and head and neck squamous cell carcinoma share some common pathogenic mechanisms, and ESCC development is associated with alcohol drinking. This study has explored novel biological markers and tumorigenic pathways that would greatly improve therapeutic strategies for ESCC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Yongmei -- Li, Lin -- Ou, Yunwei -- Gao, Zhibo -- Li, Enmin -- Li, Xiangchun -- Zhang, Weimin -- Wang, Jiaqian -- Xu, Liyan -- Zhou, Yong -- Ma, Xiaojuan -- Liu, Lingyan -- Zhao, Zitong -- Huang, Xuanlin -- Fan, Jing -- Dong, Lijia -- Chen, Gang -- Ma, Liying -- Yang, Jie -- Chen, Longyun -- He, Minghui -- Li, Miao -- Zhuang, Xuehan -- Huang, Kai -- Qiu, Kunlong -- Yin, Guangliang -- Guo, Guangwu -- Feng, Qiang -- Chen, Peishan -- Wu, Zhiyong -- Wu, Jianyi -- Ma, Ling -- Zhao, Jinyang -- Luo, Longhai -- Fu, Ming -- Xu, Bainan -- Chen, Bo -- Li, Yingrui -- Tong, Tong -- Wang, Mingrong -- Liu, Zhihua -- Lin, Dongxin -- Zhang, Xiuqing -- Yang, Huanming -- Wang, Jun -- Zhan, Qimin -- England -- Nature. 2014 May 1;509(7498):91-5. doi: 10.1038/nature13176. Epub 2014 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China [2]. ; 1] BGI-Shenzhen, Shenzhen 518083, Guangdong 518083, China [2]. ; 1] State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China [2] Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China [3]. ; 1] Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China [2]. ; State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. ; BGI-Shenzhen, Shenzhen 518083, Guangdong 518083, China. ; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China. ; Department of Tumor Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, Guangdong, China. ; Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China. ; Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670651" target="_blank"〉PubMed〈/a〉
    Keywords: Alcohol Drinking/adverse effects ; Biomarkers, Tumor/genetics ; Carcinoma, Squamous Cell/*genetics/pathology ; Cell Cycle/genetics ; Chromosomes, Human, Pair 11/genetics ; Comparative Genomic Hybridization ; DNA Copy Number Variations/genetics ; Esophageal Neoplasms/*genetics/pathology ; Exome/genetics ; Female ; Genome, Human/*genetics ; Genomics ; Histones/metabolism ; Humans ; Male ; MicroRNAs/genetics ; Mutation/*genetics ; Oncogenes/genetics ; Phenotype ; Receptors, Notch/genetics ; Risk Factors ; Wnt Signaling Pathway/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-06-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Peiyue -- Qian, Hui -- Wu, Jianhua -- England -- Nature. 2014 Jun 5;510(7503):29-31.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24910868" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Altitude ; Animals ; Animals, Wild ; China ; *Cities/economics ; City Planning/economics/*methods ; Cost-Benefit Analysis ; Ecology/economics/*trends ; Ecosystem ; Groundwater/analysis ; International Cooperation ; Plants ; Research/economics/*trends ; Risk Assessment ; *Soil/chemistry/standards ; Trees
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-05-23
    Description: The glucose transporter GLUT1 catalyses facilitative diffusion of glucose into erythrocytes and is responsible for glucose supply to the brain and other organs. Dysfunctional mutations may lead to GLUT1 deficiency syndrome, whereas overexpression of GLUT1 is a prognostic indicator for cancer. Despite decades of investigation, the structure of GLUT1 remains unknown. Here we report the crystal structure of human GLUT1 at 3.2 A resolution. The full-length protein, which has a canonical major facilitator superfamily fold, is captured in an inward-open conformation. This structure allows accurate mapping and potential mechanistic interpretation of disease-associated mutations in GLUT1. Structure-based analysis of these mutations provides an insight into the alternating access mechanism of GLUT1 and other members of the sugar porter subfamily. Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deng, Dong -- Xu, Chao -- Sun, Pengcheng -- Wu, Jianping -- Yan, Chuangye -- Hu, Mingxu -- Yan, Nieng -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 5;510(7503):121-5. doi: 10.1038/nature13306. Epub 2014 May 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China [4]. ; 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3]. ; 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847886" target="_blank"〉PubMed〈/a〉
    Keywords: Carbohydrate Metabolism, Inborn Errors/genetics ; Crystallography, X-Ray ; Escherichia coli Proteins ; Glucose Transporter Type 1/*chemistry/deficiency/genetics/metabolism ; Humans ; Ligands ; Models, Biological ; Models, Molecular ; Monosaccharide Transport Proteins/deficiency/genetics ; Mutation/genetics ; Protein Structure, Tertiary ; Structure-Activity Relationship ; Symporters
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Jun -- Izpisua Belmonte, Juan Carlos -- England -- Nature. 2014 Dec 11;516(7530):172-3. doi: 10.1038/516172a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503227" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cellular Reprogramming/*genetics/*physiology ; *Epigenesis, Genetic ; Female ; Genome/*genetics ; Induced Pluripotent Stem Cells/*cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-05
    Description: Characterization of how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for the therapeutic manipulation of stem cells. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis, expression of hypoxia inducible factor-1alpha (Hif-1alpha) and related genes, and staining with surrogate hypoxic markers (for example, pimonidazole). Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow of live mice. Using two-photon phosphorescence lifetime microscopy, we determined the absolute pO2 of the bone marrow to be quite low (〈32 mm Hg) despite very high vascular density. We further uncovered heterogeneities in local pO2, with the lowest pO2 ( approximately 9.9 mm Hg, or 1.3%) found in deeper peri-sinusoidal regions. The endosteal region, by contrast, is less hypoxic as it is perfused with small arteries that are often positive for the marker nestin. These pO2 values change markedly after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984353/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984353/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spencer, Joel A -- Ferraro, Francesca -- Roussakis, Emmanuel -- Klein, Alyssa -- Wu, Juwell -- Runnels, Judith M -- Zaher, Walid -- Mortensen, Luke J -- Alt, Clemens -- Turcotte, Raphael -- Yusuf, Rushdia -- Cote, Daniel -- Vinogradov, Sergei A -- Scadden, David T -- Lin, Charles P -- EB017274/EB/NIBIB NIH HHS/ -- HL096372/HL/NHLBI NIH HHS/ -- HL097748/HL/NHLBI NIH HHS/ -- HL097794/HL/NHLBI NIH HHS/ -- R01 EB014703/EB/NIBIB NIH HHS/ -- R01 EB017274/EB/NIBIB NIH HHS/ -- R01 HL097748/HL/NHLBI NIH HHS/ -- R01 HL097794/HL/NHLBI NIH HHS/ -- R03 HL096372/HL/NHLBI NIH HHS/ -- U01 HL100402/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Apr 10;508(7495):269-73. doi: 10.1038/nature13034. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [3] Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA. ; 1] Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA. ; 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [3] Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia. ; 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [3] Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA. ; Departement de Physique, Genie Physique et Optique and Centre de Recherche de l'Institut Universitaire en Sante Mentale de Quebec, Universite Laval, Quebec City, Quebec G1J 2G3, Canada. ; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA [3] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590072" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anoxia/diagnosis/metabolism ; Arteries/metabolism ; Bone Marrow/blood supply/drug effects/*metabolism/radiation effects ; Busulfan/pharmacology ; Cell Hypoxia ; Hematopoietic Stem Cells/cytology/metabolism ; Luminescent Measurements ; Male ; Mice ; Mice, Inbred C57BL ; Microscopy ; Nestin/metabolism ; Oxygen/*analysis/metabolism ; Photons ; Stem Cell Niche/drug effects/radiation effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-18
    Description: The ryanodine receptors (RyRs) are high-conductance intracellular Ca(2+) channels that play a pivotal role in the excitation-contraction coupling of skeletal and cardiac muscles. RyRs are the largest known ion channels, with a homotetrameric organization and approximately 5,000 residues in each protomer. Here we report the structure of the rabbit RyR1 in complex with its modulator FKBP12 at an overall resolution of 3.8 A, determined by single-particle electron cryomicroscopy. Three previously uncharacterized domains, named central, handle and helical domains, display the armadillo repeat fold. These domains, together with the amino-terminal domain, constitute a network of superhelical scaffold for binding and propagation of conformational changes. The channel domain exhibits the voltage-gated ion channel superfamily fold with distinct features. A negative-charge-enriched hairpin loop connecting S5 and the pore helix is positioned above the entrance to the selectivity-filter vestibule. The four elongated S6 segments form a right-handed helical bundle that closes the pore at the cytoplasmic border of the membrane. Allosteric regulation of the pore by the cytoplasmic domains is mediated through extensive interactions between the central domains and the channel domain. These structural features explain high ion conductance by RyRs and the long-range allosteric regulation of channel activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338550/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338550/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Zhen -- Bai, Xiao-chen -- Yan, Chuangye -- Wu, Jianping -- Li, Zhangqiang -- Xie, Tian -- Peng, Wei -- Yin, Chang-cheng -- Li, Xueming -- Scheres, Sjors H W -- Shi, Yigong -- Yan, Nieng -- MC_UP_A025_1013/Medical Research Council/United Kingdom -- England -- Nature. 2015 Jan 1;517(7532):50-5. doi: 10.1038/nature14063. Epub 2014 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [2] Ministry of Education Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; 1] Ministry of Education Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; Department of Biophysics, the Health Science Center &Center for Protein Science, Peking University, Beijing 100191, China. ; Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25517095" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Allosteric Regulation ; Animals ; Cryoelectron Microscopy ; Ion Channel Gating ; Models, Molecular ; Molecular Weight ; Protein Multimerization ; Protein Structure, Tertiary ; Rabbits ; Ryanodine Receptor Calcium Release Channel/*chemistry/metabolism/*ultrastructure ; Sarcoplasmic Reticulum/chemistry ; Tacrolimus Binding Protein 1A/chemistry/metabolism/ultrastructure ; Zinc Fingers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-08
    Print ISSN: 0887-0624
    Electronic ISSN: 1520-5029
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-02-05
    Print ISSN: 1944-8244
    Electronic ISSN: 1944-8252
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-29
    Print ISSN: 1944-8244
    Electronic ISSN: 1944-8252
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...