ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (66)
  • Mice, Inbred C57BL  (48)
  • ASTROPHYSICS
  • Life and Medical Sciences
  • 2010-2014  (114)
  • 1975-1979
  • 1970-1974
  • 1965-1969
  • 1950-1954
  • 2010  (114)
Collection
Keywords
Years
  • 2010-2014  (114)
  • 1975-1979
  • 1970-1974
  • 1965-1969
  • 1950-1954
Year
  • 1
    Publication Date: 2010-05-22
    Description: Elevated leukocyte cell numbers (leukocytosis), and monocytes in particular, promote atherosclerosis; however, how they become increased is poorly understood. Mice deficient in the adenosine triphosphate-binding cassette (ABC) transporters ABCA1 and ABCG1, which promote cholesterol efflux from macrophages and suppress atherosclerosis in hypercholesterolemic mice, displayed leukocytosis, a transplantable myeloproliferative disorder, and a dramatic expansion of the stem and progenitor cell population containing Lin(-)Sca-1(+)Kit+ (LSK) in the bone marrow. Transplantation of Abca1(-/-) Abcg1(-/-) bone marrow into apolipoprotein A-1 transgenic mice with elevated levels of high-density lipoprotein (HDL) suppressed the LSK population, reduced leukocytosis, reversed the myeloproliferative disorder, and accelerated atherosclerosis. The findings indicate that ABCA1, ABCG1, and HDL inhibit the proliferation of hematopoietic stem and multipotential progenitor cells and connect expansion of these populations with leukocytosis and accelerated atherosclerosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032591/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032591/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yvan-Charvet, Laurent -- Pagler, Tamara -- Gautier, Emmanuel L -- Avagyan, Serine -- Siry, Read L -- Han, Seongah -- Welch, Carrie L -- Wang, Nan -- Randolph, Gwendalyn J -- Snoeck, Hans W -- Tall, Alan R -- HL54591/HL/NHLBI NIH HHS/ -- R01 AG029626/AG/NIA NIH HHS/ -- R01 AI049653/AI/NIAID NIH HHS/ -- R01 AI049653-09/AI/NIAID NIH HHS/ -- R01 AI049653-10/AI/NIAID NIH HHS/ -- R01 AI061741/AI/NIAID NIH HHS/ -- R01 AI061741-03/AI/NIAID NIH HHS/ -- R01 AI061741-04/AI/NIAID NIH HHS/ -- R01A1061741/PHS HHS/ -- R01AG016327/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 25;328(5986):1689-93. doi: 10.1126/science.1189731. Epub 2010 May 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY 10032, USA. ly2159@columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20488992" target="_blank"〉PubMed〈/a〉
    Keywords: ATP Binding Cassette Transporter 1 ; ATP-Binding Cassette Transporters/genetics/*metabolism ; Animals ; Apolipoprotein A-I/genetics/metabolism ; Atherosclerosis/metabolism/*physiopathology/therapy ; Bone Marrow Transplantation ; Cell Proliferation ; Cells, Cultured ; Cholesterol/*metabolism ; Hematopoietic Stem Cells/*physiology ; Hypercholesterolemia/metabolism ; Leukocytosis/metabolism/*physiopathology/therapy ; Lipoproteins/genetics/*metabolism ; Lipoproteins, HDL/*metabolism ; Macrophages/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Inbred DBA ; Mice, Transgenic ; Multipotent Stem Cells/physiology ; Myeloid Progenitor Cells/*physiology ; Myeloproliferative Disorders/metabolism/physiopathology/therapy ; Phenotype ; Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism ; Receptors, Interleukin-3/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-22
    Description: Aberrant expression of microRNAs (miRNAs) and the enzymes that control their processing have been reported in multiple biological processes including primary and metastatic tumours, but the mechanisms governing this are not clearly understood. Here we show that TAp63, a p53 family member, suppresses tumorigenesis and metastasis, and coordinately regulates Dicer and miR-130b to suppress metastasis. Metastatic mouse and human tumours deficient in TAp63 express Dicer at very low levels, and we found that modulation of expression of Dicer and miR-130b markedly affected the metastatic potential of cells lacking TAp63. TAp63 binds to and transactivates the Dicer promoter, demonstrating direct transcriptional regulation of Dicer by TAp63. These data provide a novel understanding of the roles of TAp63 in tumour and metastasis suppression through the coordinate transcriptional regulation of Dicer and miR-130b and may have implications for the many processes regulated by miRNAs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055799/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055799/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, Xiaohua -- Chakravarti, Deepavali -- Cho, Min Soon -- Liu, Lingzhi -- Gi, Young Jin -- Lin, Yu-Li -- Leung, Marco L -- El-Naggar, Adel -- Creighton, Chad J -- Suraokar, Milind B -- Wistuba, Ignacio -- Flores, Elsa R -- 01DE019765/DE/NIDCR NIH HHS/ -- CA16672/CA/NCI NIH HHS/ -- P30 CA016672-27/CA/NCI NIH HHS/ -- P50 CA070907/CA/NCI NIH HHS/ -- P50 CA070907-10/CA/NCI NIH HHS/ -- P50 CA091846/CA/NCI NIH HHS/ -- P50 CA091846-10/CA/NCI NIH HHS/ -- P50CA070907/CA/NCI NIH HHS/ -- P50CA091846/CA/NCI NIH HHS/ -- U01 DE019765/DE/NIDCR NIH HHS/ -- U01 DE019765-03/DE/NIDCR NIH HHS/ -- England -- Nature. 2010 Oct 21;467(7318):986-90. doi: 10.1038/nature09459.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20962848" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Aging ; Cell Line ; Cell Line, Tumor ; DEAD-box RNA Helicases/biosynthesis/deficiency/genetics/*metabolism ; Endoribonucleases/genetics/*metabolism ; Female ; *Gene Expression Regulation, Neoplastic ; Genes, Tumor Suppressor/physiology ; Genomic Instability ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; MicroRNAs/*biosynthesis/genetics/metabolism ; Neoplasm Metastasis/*genetics ; Neoplasms/genetics/pathology/secretion ; Phosphoproteins/deficiency/genetics/*metabolism ; Promoter Regions, Genetic/genetics ; Ribonuclease III/biosynthesis/deficiency/genetics/*metabolism ; Trans-Activators/deficiency/genetics/*metabolism ; Transcription Factors ; Transcriptional Activation ; Tumor Suppressor Proteins/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-03-17
    Description: The vascular endothelial growth factors (VEGFs) are major angiogenic regulators and are involved in several aspects of endothelial cell physiology. However, the detailed role of VEGF-B in blood vessel function has remained unclear. Here we show that VEGF-B has an unexpected role in endothelial targeting of lipids to peripheral tissues. Dietary lipids present in circulation have to be transported through the vascular endothelium to be metabolized by tissue cells, a mechanism that is poorly understood. Bioinformatic analysis showed that Vegfb was tightly co-expressed with nuclear-encoded mitochondrial genes across a large variety of physiological conditions in mice, pointing to a role for VEGF-B in metabolism. VEGF-B specifically controlled endothelial uptake of fatty acids via transcriptional regulation of vascular fatty acid transport proteins. As a consequence, Vegfb(-/-) mice showed less uptake and accumulation of lipids in muscle, heart and brown adipose tissue, and instead shunted lipids to white adipose tissue. This regulation was mediated by VEGF receptor 1 and neuropilin 1 expressed by the endothelium. The co-expression of VEGF-B and mitochondrial proteins introduces a novel regulatory mechanism, whereby endothelial lipid uptake and mitochondrial lipid use are tightly coordinated. The involvement of VEGF-B in lipid uptake may open up the possibility for novel strategies to modulate pathological lipid accumulation in diabetes, obesity and cardiovascular diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagberg, Carolina E -- Falkevall, Annelie -- Wang, Xun -- Larsson, Erik -- Huusko, Jenni -- Nilsson, Ingrid -- van Meeteren, Laurens A -- Samen, Erik -- Lu, Li -- Vanwildemeersch, Maarten -- Klar, Joakim -- Genove, Guillem -- Pietras, Kristian -- Stone-Elander, Sharon -- Claesson-Welsh, Lena -- Yla-Herttuala, Seppo -- Lindahl, Per -- Eriksson, Ulf -- England -- Nature. 2010 Apr 8;464(7290):917-21. doi: 10.1038/nature08945. Epub 2010 Mar 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tissue Biology Group, Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20228789" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, Brown/metabolism ; Adipose Tissue, White/metabolism ; Animals ; Biological Transport ; Cell Line ; Cell Nucleus/genetics ; Cells, Cultured ; Endothelium/cytology/*metabolism ; Fatty Acid Transport Proteins/genetics ; Fatty Acids/*metabolism ; Gene Expression Regulation ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondria/genetics/metabolism ; Mitochondrial Proteins/genetics/metabolism ; Muscles/metabolism ; Myocardium/metabolism ; Neuropilin-1/genetics/metabolism ; Oligonucleotide Array Sequence Analysis ; Organ Specificity ; Signal Transduction ; Transcription, Genetic ; Vascular Endothelial Growth Factor B/deficiency/genetics/*metabolism ; Vascular Endothelial Growth Factor Receptor-1/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-09-25
    Description: Salmonella enterica serotype Typhimurium (S. Typhimurium) causes acute gut inflammation by using its virulence factors to invade the intestinal epithelium and survive in mucosal macrophages. The inflammatory response enhances the transmission success of S. Typhimurium by promoting its outgrowth in the gut lumen through unknown mechanisms. Here we show that reactive oxygen species generated during inflammation react with endogenous, luminal sulphur compounds (thiosulphate) to form a new respiratory electron acceptor, tetrathionate. The genes conferring the ability to use tetrathionate as an electron acceptor produce a growth advantage for S. Typhimurium over the competing microbiota in the lumen of the inflamed gut. We conclude that S. Typhimurium virulence factors induce host-driven production of a new electron acceptor that allows the pathogen to use respiration to compete with fermenting gut microbes. Thus the ability to trigger intestinal inflammation is crucial for the biology of this diarrhoeal pathogen.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946174/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946174/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winter, Sebastian E -- Thiennimitr, Parameth -- Winter, Maria G -- Butler, Brian P -- Huseby, Douglas L -- Crawford, Robert W -- Russell, Joseph M -- Bevins, Charles L -- Adams, L Garry -- Tsolis, Renee M -- Roth, John R -- Baumler, Andreas J -- AI040124/AI/NIAID NIH HHS/ -- AI044170/AI/NIAID NIH HHS/ -- AI073120/AI/NIAID NIH HHS/ -- AI076246/AI/NIAID NIH HHS/ -- AI088122/AI/NIAID NIH HHS/ -- R21 AI088122/AI/NIAID NIH HHS/ -- R21 AI088122-01/AI/NIAID NIH HHS/ -- R21 AI088122-02/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):426-9. doi: 10.1038/nature09415.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, California 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20864996" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Respiration ; Colitis/metabolism/microbiology ; Electron Transport ; *Electrons ; Female ; Gastrointestinal Tract/metabolism/*microbiology/*pathology ; Inflammation/metabolism/microbiology/pathology ; Intestinal Mucosa/metabolism/microbiology/pathology ; Mice ; Mice, Inbred C57BL ; Reactive Oxygen Species/metabolism ; Salmonella typhimurium/growth & development/*metabolism ; Tetrathionic Acid/metabolism ; Thiosulfates/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-05-08
    Description: As the human life span increases, the number of people suffering from cognitive decline is rising dramatically. The mechanisms underlying age-associated memory impairment are, however, not understood. Here we show that memory disturbances in the aging brain of the mouse are associated with altered hippocampal chromatin plasticity. During learning, aged mice display a specific deregulation of histone H4 lysine 12 (H4K12) acetylation and fail to initiate a hippocampal gene expression program associated with memory consolidation. Restoration of physiological H4K12 acetylation reinstates the expression of learning-induced genes and leads to the recovery of cognitive abilities. Our data suggest that deregulated H4K12 acetylation may represent an early biomarker of an impaired genome-environment interaction in the aging mouse brain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peleg, Shahaf -- Sananbenesi, Farahnaz -- Zovoilis, Athanasios -- Burkhardt, Susanne -- Bahari-Javan, Sanaz -- Agis-Balboa, Roberto Carlos -- Cota, Perla -- Wittnam, Jessica Lee -- Gogol-Doering, Andreas -- Opitz, Lennart -- Salinas-Riester, Gabriella -- Dettenhofer, Markus -- Kang, Hui -- Farinelli, Laurent -- Chen, Wei -- Fischer, Andre -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 May 7;328(5979):753-6. doi: 10.1126/science.1186088.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Aging and Cognitive Diseases, European Neuroscience Institute, Grisebach Str. 5, D-37077 Goettingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448184" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Aging/*genetics ; Animals ; Chromatin/metabolism ; *Chromatin Assembly and Disassembly ; Conditioning (Psychology) ; Epigenesis, Genetic ; Fear ; Gene Expression Profiling ; *Gene Expression Regulation ; Hippocampus/*metabolism ; Histone Deacetylase Inhibitors/metabolism/pharmacology ; Histones/*metabolism ; Hydroxamic Acids/pharmacology ; Learning/drug effects ; Lysine/metabolism ; Memory/drug effects ; Memory Disorders/*genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Microfilament Proteins/genetics/metabolism ; Nuclear Proteins/genetics/metabolism ; Signal Transduction ; Transcription Initiation Site ; Transcription, Genetic ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Several hydrated silicate deposits on Mars are observed within craters and are interpreted as excavated Noachian material. Toro crater (71.8 deg E, 17.0 deg N), located on the northern edge of the Syrtis Major Volcanic Plains, shows spectral and morphologic evidence of impact-induced hydrothermal activity. Spectroscopic observations were used to identify extensive hydrated silicate deposits, including prehnite, chlorites, smectites, and opaline material, a suite of phases that frequently results from hydrothermal alteration in terrestrial craters and also expected on Mars from geochemical modeling of hydrothermal environments. When combined with altimetry and high-resolution imaging data, these deposits appear associated predominantly with the central uplift and with portions of the northern part of the crater floor. Detailed geologic mapping of these deposits reveals geomorphic features that are consistent with hydrothermal activity that followed the impact event, including vent-like and conical mound structures, and a complex network of tectonic structures caused by fluid interactions such as fractures and joints. The crater age has been calculated from the cumulative crater size-frequency distributions and is found to be Early Hesperian. The evidence presented here provides support for impact-induced hydrothermal activity in Toro crater, that extends phyllosilicate formation processes beyond the Noachian era.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus; 208; 667-683
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Based on published lunar soil grain size distribution data, we estimate that 1-3% of the mass of typical mature lunar soils is comprised of grains less than 2.5 micrometers in diameter. These particles are in the respirable range (small enough to be inhaled). Estimates are used because the early methods of obtaining grain size distributions did not give reliable results below about 10 micrometers. Grain size analyses of Apollo 11 soil 10084 by a laser diffraction technique shows that this soil contains roughly 2% by volume in the respirable grain size, in agreement with our prior estimate.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19518 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: During the Apollo missions, crewmembers were briefly exposed to dust in the lunar module, brought in after extravehicular activity. When the lunar ascent module returned to micro-gravity, the dust that had settled on the floor now floated into the air, causing eye discomfort and occasional respiratory symptoms. Because our goal is to set an exposure standard for 6 months of episodic exposure to lunar dust for crew on the lunar surface, these brief exposures of a few days are not conclusive. Based on experience with industrial minerals such as sandblasting quartz, an exposure of several months may cause serious damage, while a short exposure may cause none. The detailed characteristics of sub-micrometer lunar dust are only poorly known, and this is the size range of particles that are of greatest concern. We have developed a method for extracting respirable dust (〈2.5 micron) from Apollo lunar soils. This method meets stringent requirements that the soil must be kept dry, exposed only to pure nitrogen, and must conserve and recover the maximum amount of both respirable dust and coarser soil. In addition, we have developed a method for grinding coarser lunar soil to produce sufficient respirable soil for animal toxicity testing while preserving the freshly exposed grain surfaces in a pristine state.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19517 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-07-20
    Description: Chronic myelogenous leukaemia (CML) can progress from a slow growing chronic phase to an aggressive blast crisis phase, but the molecular basis of this transition remains poorly understood. Here we have used mouse models of CML to show that disease progression is regulated by the Musashi-Numb signalling axis. Specifically, we find that the chronic phase is marked by high levels of Numb expression whereas the blast crisis phase has low levels of Numb expression, and that ectopic expression of Numb promotes differentiation and impairs advanced-phase disease in vivo. As a possible explanation for the decreased levels of Numb in the blast crisis phase, we show that NUP98-HOXA9, an oncogene associated with blast crisis CML, can trigger expression of the RNA-binding protein Musashi2 (Msi2), which in turn represses Numb. Notably, loss of Msi2 restores Numb expression and significantly impairs the development and propagation of blast crisis CML in vitro and in vivo. Finally we show that Msi2 expression is not only highly upregulated during human CML progression but is also an early indicator of poorer prognosis. These data show that the Musashi-Numb pathway can control the differentiation of CML cells, and raise the possibility that targeting this pathway may provide a new strategy for the therapy of aggressive leukaemias.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918284/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918284/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ito, Takahiro -- Kwon, Hyog Young -- Zimdahl, Bryan -- Congdon, Kendra L -- Blum, Jordan -- Lento, William E -- Zhao, Chen -- Lagoo, Anand -- Gerrard, Gareth -- Foroni, Letizia -- Goldman, John -- Goh, Harriet -- Kim, Soo-Hyun -- Kim, Dong-Wook -- Chuah, Charles -- Oehler, Vivian G -- Radich, Jerald P -- Jordan, Craig T -- Reya, Tannishtha -- AI067798/AI/NIAID NIH HHS/ -- CA122206/CA/NCI NIH HHS/ -- CA140371/CA/NCI NIH HHS/ -- CA18029/CA/NCI NIH HHS/ -- DK072234/DK/NIDDK NIH HHS/ -- DK63031/DK/NIDDK NIH HHS/ -- DP1 CA174422/CA/NCI NIH HHS/ -- DP1 OD006430/OD/NIH HHS/ -- DP1 OD006430-01/OD/NIH HHS/ -- DP1 OD006430-02/OD/NIH HHS/ -- DP1OD006430/OD/NIH HHS/ -- HL097767/HL/NHLBI NIH HHS/ -- P01 CA018029/CA/NCI NIH HHS/ -- R01 CA140371/CA/NCI NIH HHS/ -- R01 DK063031/DK/NIDDK NIH HHS/ -- R01 DK063031-01/DK/NIDDK NIH HHS/ -- R01 DK063031-01S1/DK/NIDDK NIH HHS/ -- R01 DK063031-02/DK/NIDDK NIH HHS/ -- R01 DK063031-03/DK/NIDDK NIH HHS/ -- R01 DK063031-04/DK/NIDDK NIH HHS/ -- R01 DK063031-05/DK/NIDDK NIH HHS/ -- R01 DK063031-06/DK/NIDDK NIH HHS/ -- R01 DK063031-07/DK/NIDDK NIH HHS/ -- R01 DK063031-07S1/DK/NIDDK NIH HHS/ -- R01 DK063031-08/DK/NIDDK NIH HHS/ -- R01 DK072234/DK/NIDDK NIH HHS/ -- R01 DK072234-01A1/DK/NIDDK NIH HHS/ -- R01 DK072234-02/DK/NIDDK NIH HHS/ -- R01 DK072234-03/DK/NIDDK NIH HHS/ -- R01 DK072234-04/DK/NIDDK NIH HHS/ -- R01 HL097767/HL/NHLBI NIH HHS/ -- R01 HL097767-01/HL/NHLBI NIH HHS/ -- R01 HL097767-02/HL/NHLBI NIH HHS/ -- T32 GM007184-33/GM/NIGMS NIH HHS/ -- U19 AI067798/AI/NIAID NIH HHS/ -- U19 AI067798-010006/AI/NIAID NIH HHS/ -- U19 AI067798-020006/AI/NIAID NIH HHS/ -- U19 AI067798-030006/AI/NIAID NIH HHS/ -- U19 AI067798-040006/AI/NIAID NIH HHS/ -- U19 AI067798-050006/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Aug 5;466(7307):765-8. doi: 10.1038/nature09171. Epub 2010 Jul 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20639863" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blast Crisis/genetics/metabolism/pathology ; *Cell Differentiation/genetics ; Disease Progression ; Fusion Proteins, bcr-abl/genetics/metabolism ; Gene Expression Regulation, Neoplastic ; Homeodomain Proteins/genetics/metabolism ; Humans ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics/*metabolism/*pathology ; Membrane Proteins/biosynthesis/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/biosynthesis/genetics/metabolism ; Nuclear Pore Complex Proteins/genetics/metabolism ; Oncogene Proteins, Fusion/genetics/metabolism ; Prognosis ; RNA-Binding Proteins/biosynthesis/genetics/*metabolism ; Receptor, Notch1/metabolism ; Signal Transduction ; Tumor Suppressor Protein p53/metabolism ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-12-03
    Description: The capacity to fine-tune cellular bioenergetics with the demands of stem-cell maintenance and regeneration is central to normal development and ageing, and to organismal survival during periods of acute stress. How energy metabolism and stem-cell homeostatic processes are coordinated is not well understood. Lkb1 acts as an evolutionarily conserved regulator of cellular energy metabolism in eukaryotic cells and functions as the major upstream kinase to phosphorylate AMP-activated protein kinase (AMPK) and 12 other AMPK-related kinases. Whether Lkb1 regulates stem-cell maintenance remains unknown. Here we show that Lkb1 has an essential role in haematopoietic stem cell (HSC) homeostasis. We demonstrate that ablation of Lkb1 in adult mice results in severe pancytopenia and subsequent lethality. Loss of Lkb1 leads to impaired survival and escape from quiescence of HSCs, resulting in exhaustion of the HSC pool and a marked reduction of HSC repopulating potential in vivo. Lkb1 deletion has an impact on cell proliferation in HSCs, but not on more committed compartments, pointing to context-specific functions for Lkb1 in haematopoiesis. The adverse impact of Lkb1 deletion on haematopoiesis was predominantly cell-autonomous and mTOR complex 1 (mTORC1)-independent, and involves multiple mechanisms converging on mitochondrial apoptosis and possibly downregulation of PGC-1 coactivators and their transcriptional network, which have critical roles in mitochondrial biogenesis and function. Thus, Lkb1 serves as an essential regulator of HSCs and haematopoiesis, and more generally, points to the critical importance of coupling energy metabolism and stem-cell homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058342/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058342/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gan, Boyi -- Hu, Jian -- Jiang, Shan -- Liu, Yingchun -- Sahin, Ergun -- Zhuang, Li -- Fletcher-Sananikone, Eliot -- Colla, Simona -- Wang, Y Alan -- Chin, Lynda -- Depinho, Ronald A -- 01CA141508/CA/NCI NIH HHS/ -- R21 CA135057/CA/NCI NIH HHS/ -- R21 CA135057-01/CA/NCI NIH HHS/ -- R21CA135057/CA/NCI NIH HHS/ -- U01 CA141508/CA/NCI NIH HHS/ -- U01 CA141508-01/CA/NCI NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):701-4. doi: 10.1038/nature09595.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124456" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Cycle/*physiology ; Cell Proliferation ; Cell Survival ; *Energy Metabolism ; Female ; Gene Deletion ; Hematopoiesis ; Hematopoietic Stem Cells/*cytology/*metabolism/pathology ; *Homeostasis ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria/metabolism/pathology ; Multiprotein Complexes ; Pancytopenia/genetics ; Phenotype ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Proteins/metabolism ; Survival Analysis ; TOR Serine-Threonine Kinases ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...