ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (56)
  • Crystallography, X-Ray  (47)
  • Cell Proliferation
  • Nature Publishing Group (NPG)  (123)
  • 2010-2014  (123)
  • 2012  (54)
  • 2010  (69)
Collection
Publisher
Years
  • 2010-2014  (123)
Year
  • 11
    Publication Date: 2012-08-14
    Description: Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (~5%) and SMC3 (〈1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the 'used' cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443318/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443318/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deardorff, Matthew A -- Bando, Masashige -- Nakato, Ryuichiro -- Watrin, Erwan -- Itoh, Takehiko -- Minamino, Masashi -- Saitoh, Katsuya -- Komata, Makiko -- Katou, Yuki -- Clark, Dinah -- Cole, Kathryn E -- De Baere, Elfride -- Decroos, Christophe -- Di Donato, Nataliya -- Ernst, Sarah -- Francey, Lauren J -- Gyftodimou, Yolanda -- Hirashima, Kyotaro -- Hullings, Melanie -- Ishikawa, Yuuichi -- Jaulin, Christian -- Kaur, Maninder -- Kiyono, Tohru -- Lombardi, Patrick M -- Magnaghi-Jaulin, Laura -- Mortier, Geert R -- Nozaki, Naohito -- Petersen, Michael B -- Seimiya, Hiroyuki -- Siu, Victoria M -- Suzuki, Yutaka -- Takagaki, Kentaro -- Wilde, Jonathan J -- Willems, Patrick J -- Prigent, Claude -- Gillessen-Kaesbach, Gabriele -- Christianson, David W -- Kaiser, Frank J -- Jackson, Laird G -- Hirota, Toru -- Krantz, Ian D -- Shirahige, Katsuhiko -- GM49758/GM/NIGMS NIH HHS/ -- K08 HD055488/HD/NICHD NIH HHS/ -- K08HD055488/HD/NICHD NIH HHS/ -- P01 HD052860/HD/NICHD NIH HHS/ -- R01 GM049758/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Sep 13;489(7415):313-7. doi: 10.1038/nature11316.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Human Genetics and Molecular Biology, The Children's Hospital of Philadelphia, Pennsylvania 19104, USA. deardorff@email.chop.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22885700" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Adaptor Proteins, Signal Transducing/metabolism ; Anaphase ; Binding Sites ; Cell Cycle Proteins/chemistry/*metabolism ; Chondroitin Sulfate Proteoglycans/chemistry/metabolism ; Chromatin/genetics/metabolism ; Chromatin Immunoprecipitation ; Chromosomal Proteins, Non-Histone/chemistry/*metabolism ; Crystallography, X-Ray ; De Lange Syndrome/*genetics/*metabolism ; Female ; Fibroblasts ; HeLa Cells ; Histone Deacetylases/chemistry/deficiency/*genetics/metabolism ; Humans ; Male ; Models, Molecular ; Mutant Proteins/chemistry/genetics/metabolism ; Mutation/*genetics ; Nuclear Proteins/metabolism ; Phosphoproteins/metabolism ; Prophase ; Protein Conformation ; Proteins/genetics ; Repressor Proteins/chemistry/deficiency/*genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2010-10-15
    Description: The pre-T-cell antigen receptor (pre-TCR), expressed by immature thymocytes, has a pivotal role in early T-cell development, including TCR beta-selection, survival and proliferation of CD4(-)CD8(-) double-negative thymocytes, and subsequent alphabeta T-cell lineage differentiation. Whereas alphabetaTCR ligation by the peptide-loaded major histocompatibility complex initiates T-cell signalling, pre-TCR-induced signalling occurs by means of a ligand-independent dimerization event. The pre-TCR comprises an invariant alpha-chain (pre-Talpha) that pairs with any TCR beta-chain (TCRbeta) following successful TCR beta-gene rearrangement. Here we provide the basis of pre-Talpha-TCRbeta assembly and pre-TCR dimerization. The pre-Talpha chain comprised a single immunoglobulin-like domain that is structurally distinct from the constant (C) domain of the TCR alpha-chain; nevertheless, the mode of association between pre-Talpha and TCRbeta mirrored that mediated by the Calpha-Cbeta domains of the alphabetaTCR. The pre-TCR had a propensity to dimerize in solution, and the molecular envelope of the pre-TCR dimer correlated well with the observed head-to-tail pre-TCR dimer. This mode of pre-TCR dimerization enabled the pre-Talpha domain to interact with the variable (V) beta domain through residues that are highly conserved across the Vbeta and joining (J) beta gene families, thus mimicking the interactions at the core of the alphabetaTCR's Valpha-Vbeta interface. Disruption of this pre-Talpha-Vbeta dimer interface abrogated pre-TCR dimerization in solution and impaired pre-TCR expression on the cell surface. Accordingly, we provide a mechanism of pre-TCR self-association that allows the pre-Talpha chain to simultaneously 'sample' the correct folding of both the V and C domains of any TCR beta-chain, regardless of its ultimate specificity, which represents a critical checkpoint in T-cell development. This unusual dual-chaperone-like sensing function of pre-Talpha represents a unique mechanism in nature whereby developmental quality control regulates the expression and signalling of an integral membrane receptor complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pang, Siew Siew -- Berry, Richard -- Chen, Zhenjun -- Kjer-Nielsen, Lars -- Perugini, Matthew A -- King, Glenn F -- Wang, Christina -- Chew, Sock Hui -- La Gruta, Nicole L -- Williams, Neal K -- Beddoe, Travis -- Tiganis, Tony -- Cowieson, Nathan P -- Godfrey, Dale I -- Purcell, Anthony W -- Wilce, Matthew C J -- McCluskey, James -- Rossjohn, Jamie -- England -- Nature. 2010 Oct 14;467(7317):844-8. doi: 10.1038/nature09448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944746" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Gene Rearrangement, T-Lymphocyte/genetics ; Humans ; Models, Molecular ; Mutation ; Protein Folding ; *Protein Multimerization ; Protein Structure, Tertiary ; Receptors, Antigen, T-Cell/*chemistry/genetics/*metabolism ; Receptors, Antigen, T-Cell, alpha-beta/chemistry/metabolism ; Signal Transduction ; Solutions ; T-Lymphocytes/cytology/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2010-12-03
    Description: The capacity to fine-tune cellular bioenergetics with the demands of stem-cell maintenance and regeneration is central to normal development and ageing, and to organismal survival during periods of acute stress. How energy metabolism and stem-cell homeostatic processes are coordinated is not well understood. Lkb1 acts as an evolutionarily conserved regulator of cellular energy metabolism in eukaryotic cells and functions as the major upstream kinase to phosphorylate AMP-activated protein kinase (AMPK) and 12 other AMPK-related kinases. Whether Lkb1 regulates stem-cell maintenance remains unknown. Here we show that Lkb1 has an essential role in haematopoietic stem cell (HSC) homeostasis. We demonstrate that ablation of Lkb1 in adult mice results in severe pancytopenia and subsequent lethality. Loss of Lkb1 leads to impaired survival and escape from quiescence of HSCs, resulting in exhaustion of the HSC pool and a marked reduction of HSC repopulating potential in vivo. Lkb1 deletion has an impact on cell proliferation in HSCs, but not on more committed compartments, pointing to context-specific functions for Lkb1 in haematopoiesis. The adverse impact of Lkb1 deletion on haematopoiesis was predominantly cell-autonomous and mTOR complex 1 (mTORC1)-independent, and involves multiple mechanisms converging on mitochondrial apoptosis and possibly downregulation of PGC-1 coactivators and their transcriptional network, which have critical roles in mitochondrial biogenesis and function. Thus, Lkb1 serves as an essential regulator of HSCs and haematopoiesis, and more generally, points to the critical importance of coupling energy metabolism and stem-cell homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058342/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058342/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gan, Boyi -- Hu, Jian -- Jiang, Shan -- Liu, Yingchun -- Sahin, Ergun -- Zhuang, Li -- Fletcher-Sananikone, Eliot -- Colla, Simona -- Wang, Y Alan -- Chin, Lynda -- Depinho, Ronald A -- 01CA141508/CA/NCI NIH HHS/ -- R21 CA135057/CA/NCI NIH HHS/ -- R21 CA135057-01/CA/NCI NIH HHS/ -- R21CA135057/CA/NCI NIH HHS/ -- U01 CA141508/CA/NCI NIH HHS/ -- U01 CA141508-01/CA/NCI NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):701-4. doi: 10.1038/nature09595.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124456" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Cycle/*physiology ; Cell Proliferation ; Cell Survival ; *Energy Metabolism ; Female ; Gene Deletion ; Hematopoiesis ; Hematopoietic Stem Cells/*cytology/*metabolism/pathology ; *Homeostasis ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria/metabolism/pathology ; Multiprotein Complexes ; Pancytopenia/genetics ; Phenotype ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Proteins/metabolism ; Survival Analysis ; TOR Serine-Threonine Kinases ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2010-06-26
    Description: The canonical role of messenger RNA (mRNA) is to deliver protein-coding information to sites of protein synthesis. However, given that microRNAs bind to RNAs, we hypothesized that RNAs could possess a regulatory role that relies on their ability to compete for microRNA binding, independently of their protein-coding function. As a model for the protein-coding-independent role of RNAs, we describe the functional relationship between the mRNAs produced by the PTEN tumour suppressor gene and its pseudogene PTENP1 and the critical consequences of this interaction. We find that PTENP1 is biologically active as it can regulate cellular levels of PTEN and exert a growth-suppressive role. We also show that the PTENP1 locus is selectively lost in human cancer. We extended our analysis to other cancer-related genes that possess pseudogenes, such as oncogenic KRAS. We also demonstrate that the transcripts of protein-coding genes such as PTEN are biologically active. These findings attribute a novel biological role to expressed pseudogenes, as they can regulate coding gene expression, and reveal a non-coding function for mRNAs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206313/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206313/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poliseno, Laura -- Salmena, Leonardo -- Zhang, Jiangwen -- Carver, Brett -- Haveman, William J -- Pandolfi, Pier Paolo -- R01 CA-82328-09/CA/NCI NIH HHS/ -- R01 CA102142/CA/NCI NIH HHS/ -- R01 CA102142-07/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Jun 24;465(7301):1033-8. doi: 10.1038/nature09144.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577206" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/genetics ; Binding, Competitive ; Cell Line ; Gene Expression Regulation, Neoplastic/*genetics ; Genes, Tumor Suppressor ; Humans ; MicroRNAs/*genetics ; Models, Genetic ; Neoplasms/*genetics ; PTEN Phosphohydrolase/*genetics ; Proto-Oncogene Proteins/genetics ; Pseudogenes/*genetics ; RNA, Messenger/*genetics ; ras Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2010-04-23
    Description: The worldwide prevalence of chronic hepatitis C virus (HCV) infection is estimated to be approaching 200 million people. Current therapy relies upon a combination of pegylated interferon-alpha and ribavirin, a poorly tolerated regimen typically associated with less than 50% sustained virological response rate in those infected with genotype 1 virus. The development of direct-acting antiviral agents to treat HCV has focused predominantly on inhibitors of the viral enzymes NS3 protease and the RNA-dependent RNA polymerase NS5B. Here we describe the profile of BMS-790052, a small molecule inhibitor of the HCV NS5A protein that exhibits picomolar half-maximum effective concentrations (EC(50)) towards replicons expressing a broad range of HCV genotypes and the JFH-1 genotype 2a infectious virus in cell culture. In a phase I clinical trial in patients chronically infected with HCV, administration of a single 100-mg dose of BMS-790052 was associated with a 3.3 log(10) reduction in mean viral load measured 24 h post-dose that was sustained for an additional 120 h in two patients infected with genotype 1b virus. Genotypic analysis of samples taken at baseline, 24 and 144 h post-dose revealed that the major HCV variants observed had substitutions at amino-acid positions identified using the in vitro replicon system. These results provide the first clinical validation of an inhibitor of HCV NS5A, a protein with no known enzymatic function, as an approach to the suppression of virus replication that offers potential as part of a therapeutic regimen based on combinations of HCV inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Min -- Nettles, Richard E -- Belema, Makonen -- Snyder, Lawrence B -- Nguyen, Van N -- Fridell, Robert A -- Serrano-Wu, Michael H -- Langley, David R -- Sun, Jin-Hua -- O'Boyle, Donald R 2nd -- Lemm, Julie A -- Wang, Chunfu -- Knipe, Jay O -- Chien, Caly -- Colonno, Richard J -- Grasela, Dennis M -- Meanwell, Nicholas A -- Hamann, Lawrence G -- England -- Nature. 2010 May 6;465(7294):96-100. doi: 10.1038/nature08960. Epub 2010 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20410884" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Animals ; Antiviral Agents/blood/chemistry/*pharmacology/therapeutic use ; Cell Line ; Cercopithecus aethiops ; Drug Resistance, Viral ; Female ; Genotype ; HeLa Cells ; Hepacivirus/*drug effects ; Hepatitis C/drug therapy/virology ; Humans ; Imidazoles/blood/chemistry/*pharmacology ; Inhibitory Concentration 50 ; Male ; Middle Aged ; Time Factors ; Vero Cells ; Viral Load/drug effects ; Viral Nonstructural Proteins/*antagonists & inhibitors ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-06-22
    Description: The molecular clock maintains energy constancy by producing circadian oscillations of rate-limiting enzymes involved in tissue metabolism across the day and night. During periods of feeding, pancreatic islets secrete insulin to maintain glucose homeostasis, and although rhythmic control of insulin release is recognized to be dysregulated in humans with diabetes, it is not known how the circadian clock may affect this process. Here we show that pancreatic islets possess self-sustained circadian gene and protein oscillations of the transcription factors CLOCK and BMAL1. The phase of oscillation of islet genes involved in growth, glucose metabolism and insulin signalling is delayed in circadian mutant mice, and both Clock and Bmal1 (also called Arntl) mutants show impaired glucose tolerance, reduced insulin secretion and defects in size and proliferation of pancreatic islets that worsen with age. Clock disruption leads to transcriptome-wide alterations in the expression of islet genes involved in growth, survival and synaptic vesicle assembly. Notably, conditional ablation of the pancreatic clock causes diabetes mellitus due to defective beta-cell function at the very latest stage of stimulus-secretion coupling. These results demonstrate a role for the beta-cell clock in coordinating insulin secretion with the sleep-wake cycle, and reveal that ablation of the pancreatic clock can trigger the onset of diabetes mellitus.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920067/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920067/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marcheva, Biliana -- Ramsey, Kathryn Moynihan -- Buhr, Ethan D -- Kobayashi, Yumiko -- Su, Hong -- Ko, Caroline H -- Ivanova, Ganka -- Omura, Chiaki -- Mo, Shelley -- Vitaterna, Martha H -- Lopez, James P -- Philipson, Louis H -- Bradfield, Christopher A -- Crosby, Seth D -- JeBailey, Lellean -- Wang, Xiaozhong -- Takahashi, Joseph S -- Bass, Joseph -- P01 AG011412/AG/NIA NIH HHS/ -- P01 AG011412-080011/AG/NIA NIH HHS/ -- R01 HL097817/HL/NHLBI NIH HHS/ -- R01 HL097817-01/HL/NHLBI NIH HHS/ -- R37 ES005703/ES/NIEHS NIH HHS/ -- R37-ES-005703/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jul 29;466(7306):627-31. doi: 10.1038/nature09253.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20562852" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/deficiency/*genetics/metabolism ; Aging/genetics/pathology ; Animals ; Blood Glucose/analysis/metabolism ; CLOCK Proteins/deficiency/*genetics/metabolism ; Cell Proliferation ; Cell Size ; Cell Survival ; Circadian Rhythm/genetics/*physiology ; Diabetes Mellitus/genetics/*metabolism ; Gene Expression Profiling ; Glucose Intolerance/genetics ; Glucose Tolerance Test ; In Vitro Techniques ; Insulin/*blood/metabolism/secretion ; Islets of Langerhans/*metabolism/pathology/secretion ; Mice ; Period Circadian Proteins/genetics/metabolism ; Phenotype ; Sleep/genetics/physiology ; Synaptic Vesicles/metabolism ; Wakefulness/genetics/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-05-28
    Description: CD95 (also called Fas and APO-1) is a prototypical death receptor that regulates tissue homeostasis mainly in the immune system through the induction of apoptosis. During cancer progression CD95 is frequently downregulated or cells are rendered apoptosis resistant, raising the possibility that loss of CD95 is part of a mechanism for tumour evasion. However, complete loss of CD95 is rarely seen in human cancers and many cancer cells express large quantities of CD95 and are highly sensitive to CD95-mediated apoptosis in vitro. Furthermore, cancer patients frequently have elevated levels of the physiological ligand for CD95, CD95L. These data raise the possibility that CD95 could actually promote the growth of tumours through its non-apoptotic activities. Here we show that cancer cells in general, regardless of their CD95 apoptosis sensitivity, depend on constitutive activity of CD95, stimulated by cancer-produced CD95L, for optimal growth. Consistently, loss of CD95 in mouse models of ovarian cancer and liver cancer reduces cancer incidence as well as the size of the tumours. The tumorigenic activity of CD95 is mediated by a pathway involving JNK and Jun. These results demonstrate that CD95 has a growth-promoting role during tumorigenesis and indicate that efforts to inhibit its activity rather than to enhance it should be considered during cancer therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879093/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879093/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Lina -- Park, Sun-Mi -- Tumanov, Alexei V -- Hau, Annika -- Sawada, Kenjiro -- Feig, Christine -- Turner, Jerrold R -- Fu, Yang-Xin -- Romero, Iris L -- Lengyel, Ernst -- Peter, Marcus E -- CA112240/CA/NCI NIH HHS/ -- K12 HD000849/HD/NICHD NIH HHS/ -- L30 CA153336/CA/NCI NIH HHS/ -- R01 CA095319/CA/NCI NIH HHS/ -- R01 CA11182/CA/NCI NIH HHS/ -- R01 CA112240/CA/NCI NIH HHS/ -- R01 CA112240-01A1/CA/NCI NIH HHS/ -- R01 CA112240-02/CA/NCI NIH HHS/ -- R01 CA112240-03/CA/NCI NIH HHS/ -- R01 CA112240-04/CA/NCI NIH HHS/ -- R01 CA112240-05/CA/NCI NIH HHS/ -- England -- Nature. 2010 May 27;465(7297):492-6. doi: 10.1038/nature09075.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Ben May Department for Cancer Research, The University of Chicago, 924 E 57th Street, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20505730" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/deficiency/genetics/*metabolism ; Apoptosis ; Carcinoma, Endometrioid/metabolism/pathology ; Cell Line, Tumor ; Cell Proliferation ; Fas Ligand Protein/antagonists & inhibitors/immunology/metabolism ; Female ; Gene Expression Regulation, Neoplastic ; Hepatocytes/enzymology/metabolism/pathology ; Humans ; Liver Neoplasms/enzymology/metabolism/pathology ; Male ; Mice ; Mitogen-Activated Protein Kinase 8/deficiency/genetics/metabolism ; Neoplasms/*metabolism/*pathology ; Ovarian Neoplasms/metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-10-19
    Description: The derivation of human ES cells (hESCs) from human blastocysts represents one of the milestones in stem cell biology. The full potential of hESCs in research and clinical applications requires a detailed understanding of the genetic network that governs the unique properties of hESCs. Here, we report a genome-wide RNA interference screen to identify genes which regulate self-renewal and pluripotency properties in hESCs. Interestingly, functionally distinct complexes involved in transcriptional regulation and chromatin remodelling are among the factors identified in the screen. To understand the roles of these potential regulators of hESCs, we studied transcription factor PRDM14 to gain new insights into its functional roles in the regulation of pluripotency. We showed that PRDM14 regulates directly the expression of key pluripotency gene POU5F1 through its proximal enhancer. Genome-wide location profiling experiments revealed that PRDM14 colocalized extensively with other key transcription factors such as OCT4, NANOG and SOX2, indicating that PRDM14 is integrated into the core transcriptional regulatory network. More importantly, in a gain-of-function assay, we showed that PRDM14 is able to enhance the efficiency of reprogramming of human fibroblasts in conjunction with OCT4, SOX2 and KLF4. Altogether, our study uncovers a wealth of novel hESC regulators wherein PRDM14 exemplifies a key transcription factor required for the maintenance of hESC identity and the reacquisition of pluripotency in human somatic cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chia, Na-Yu -- Chan, Yun-Shen -- Feng, Bo -- Lu, Xinyi -- Orlov, Yuriy L -- Moreau, Dimitri -- Kumar, Pankaj -- Yang, Lin -- Jiang, Jianming -- Lau, Mei-Sheng -- Huss, Mikael -- Soh, Boon-Seng -- Kraus, Petra -- Li, Pin -- Lufkin, Thomas -- Lim, Bing -- Clarke, Neil D -- Bard, Frederic -- Ng, Huck-Hui -- England -- Nature. 2010 Nov 11;468(7321):316-20. doi: 10.1038/nature09531. Epub 2010 Oct 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Regulation Laboratory, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20953172" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; Cellular Reprogramming/genetics ; DNA-Binding Proteins/genetics/metabolism ; Embryonic Stem Cells/*cytology/*metabolism ; Enhancer Elements, Genetic/genetics ; Fibroblasts/cytology/metabolism ; Gene Expression Regulation/genetics ; Genome, Human/*genetics ; Humans ; Induced Pluripotent Stem Cells/cytology/metabolism ; Mice ; Octamer Transcription Factor-3/genetics/metabolism ; *RNA Interference ; Repressor Proteins/genetics/*metabolism ; SOXB1 Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2010-07-30
    Description: The post-translational methylation of alpha-amino groups was first discovered over 30 years ago on the bacterial ribosomal proteins L16 and L33 (refs 1, 2), but almost nothing is known about the function or enzymology of this modification. Several other bacterial and eukaryotic proteins have since been shown to be alpha-N-methylated. However, the Ran guanine nucleotide-exchange factor, RCC1, is the only protein for which any biological function of alpha-N-methylation has been identified. Methylation-defective mutants of RCC1 have reduced affinity for DNA and cause mitotic defects, but further characterization of this modification has been hindered by ignorance of the responsible methyltransferase. All fungal and animal N-terminally methylated proteins contain a unique N-terminal motif, Met-(Ala/Pro/Ser)-Pro-Lys, indicating that they may be targets of the same, unknown enzyme. The initiating Met is cleaved, and the exposed alpha-amino group is mono-, di- or trimethylated. Here we report the discovery of the first alpha-N-methyltransferase, which we named N-terminal RCC1 methyltransferase (NRMT). Substrate docking and mutational analysis of RCC1 defined the NRMT recognition sequence and enabled the identification of numerous new methylation targets, including SET (also known as TAF-I or PHAPII) and the retinoblastoma protein, RB. Knockdown of NRMT recapitulates the multi-spindle phenotype seen with methylation-defective RCC1 mutants, demonstrating the importance of alpha-N-methylation for normal bipolar spindle formation and chromosome segregation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939154/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939154/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tooley, Christine E Schaner -- Petkowski, Janusz J -- Muratore-Schroeder, Tara L -- Balsbaugh, Jeremy L -- Shabanowitz, Jeffrey -- Sabat, Michal -- Minor, Wladek -- Hunt, Donald F -- Macara, Ian G -- R01 GM050526/GM/NIGMS NIH HHS/ -- R01 GM050526-17/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 26;466(7310):1125-8. doi: 10.1038/nature09343.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA. ces5g@virginia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20668449" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/*metabolism ; Cell Line ; Chromosome Segregation ; Gene Knockdown Techniques ; Guanine Nucleotide Exchange Factors/*metabolism ; HeLa Cells ; Histone Chaperones/metabolism ; Humans ; Methyltransferases/chemistry/genetics/*metabolism ; Models, Molecular ; Mutation/genetics ; Nuclear Proteins/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Retinoblastoma Protein/*metabolism ; Spindle Apparatus/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2010-01-19
    Description: Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation. DNA methylation provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1) maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance, the role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unclear. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis showed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, UHRF1 (refs 9, 10), a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A and B, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050546/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050546/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sen, George L -- Reuter, Jason A -- Webster, Daniel E -- Zhu, Lilly -- Khavari, Paul A -- AR055849/AR/NIAMS NIH HHS/ -- AR45192/AR/NIAMS NIH HHS/ -- F32 AR055849/AR/NIAMS NIH HHS/ -- F32 AR055849-02/AR/NIAMS NIH HHS/ -- K01 AR057828/AR/NIAMS NIH HHS/ -- R01 AR045192/AR/NIAMS NIH HHS/ -- R01 AR045192-11A2/AR/NIAMS NIH HHS/ -- R01 AR049737/AR/NIAMS NIH HHS/ -- R01 AR049737-05/AR/NIAMS NIH HHS/ -- T32 CA009302/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jan 28;463(7280):563-7. doi: 10.1038/nature08683. Epub 2010 Jan 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Programs in Epithelial Biology and Cancer Biology and the Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20081831" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; DNA Methylation ; Down-Regulation ; Epidermis/*cytology/*metabolism ; Female ; Gene Silencing ; Humans ; Mice ; Mice, SCID ; Repressor Proteins/deficiency/genetics/*metabolism ; Stem Cells/*cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...