ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (19)
  • American Association for the Advancement of Science (AAAS)  (19)
  • 2005-2009  (19)
  • 2007  (19)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (19)
Years
  • 2005-2009  (19)
Year
  • 1
    Publication Date: 2007-10-13
    Description: Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene "mountains" and a much larger number of gene "hills" that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Laura D -- Parsons, D Williams -- Jones, Sian -- Lin, Jimmy -- Sjoblom, Tobias -- Leary, Rebecca J -- Shen, Dong -- Boca, Simina M -- Barber, Thomas -- Ptak, Janine -- Silliman, Natalie -- Szabo, Steve -- Dezso, Zoltan -- Ustyanksky, Vadim -- Nikolskaya, Tatiana -- Nikolsky, Yuri -- Karchin, Rachel -- Wilson, Paul A -- Kaminker, Joshua S -- Zhang, Zemin -- Croshaw, Randal -- Willis, Joseph -- Dawson, Dawn -- Shipitsin, Michail -- Willson, James K V -- Sukumar, Saraswati -- Polyak, Kornelia -- Park, Ben Ho -- Pethiyagoda, Charit L -- Pant, P V Krishna -- Ballinger, Dennis G -- Sparks, Andrew B -- Hartigan, James -- Smith, Douglas R -- Suh, Erick -- Papadopoulos, Nickolas -- Buckhaults, Phillip -- Markowitz, Sanford D -- Parmigiani, Giovanni -- Kinzler, Kenneth W -- Velculescu, Victor E -- Vogelstein, Bert -- CA 43460/CA/NCI NIH HHS/ -- CA 57345/CA/NCI NIH HHS/ -- CA109274/CA/NCI NIH HHS/ -- CA112828/CA/NCI NIH HHS/ -- CA121113/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- GM070219/GM/NIGMS NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- P30-CA43703/CA/NCI NIH HHS/ -- RR017698/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1108-13. Epub 2007 Oct 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/*genetics/metabolism ; Cell Line ; Chromosome Mapping ; Colorectal Neoplasms/*genetics/metabolism ; Computational Biology ; DNA, Neoplasm ; Databases, Genetic ; Genes, Neoplasm ; Genome, Human ; Humans ; Metabolic Networks and Pathways/genetics ; Mice ; Mutation ; Neoplasm Proteins/genetics/metabolism ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-07-14
    Description: The temporal and spatial regulation of gene expression in mammalian development is linked to the establishment of functional chromatin domains. Here, we report that tissue-specific transcription of a retrotransposon repeat in the murine growth hormone locus is required for gene activation. This repeat serves as a boundary to block the influence of repressive chromatin modifications. The repeat element is able to generate short, overlapping Pol II-and Pol III-driven transcripts, both of which are necessary and sufficient to enable a restructuring of the regulated locus into nuclear compartments. These data suggest that transcription of interspersed repetitive sequences may represent a developmental strategy for the establishment of functionally distinct domains within the mammalian genome to control gene activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lunyak, Victoria V -- Prefontaine, Gratien G -- Nunez, Esperanza -- Cramer, Thorsten -- Ju, Bong-Gun -- Ohgi, Kenneth A -- Hutt, Kasey -- Roy, Rosa -- Garcia-Diaz, Angel -- Zhu, Xiaoyan -- Yung, Yun -- Montoliu, Lluis -- Glass, Christopher K -- Rosenfeld, Michael G -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):248-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, School of Medicine, University of California, San Diego, 9500 Gilman Drive, Room 345, La Jolla, CA 92093-0648, USA. vlunyak@uscd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromatin Immunoprecipitation ; DNA Polymerase II/metabolism ; DNA Polymerase III/metabolism ; *Gene Expression Regulation, Developmental ; Growth Hormone/*genetics ; Histones/metabolism ; *Insulator Elements ; Methylation ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; *Organogenesis ; Pituitary Gland/*embryology/metabolism ; *Short Interspersed Nucleotide Elements ; *Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-01-20
    Description: The Staphylococcus aureus Panton-Valentine leukocidin (PVL) is a pore-forming toxin secreted by strains epidemiologically associated with the current outbreak of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) and with the often-lethal necrotizing pneumonia. To investigate the role of PVL in pulmonary disease, we tested the pathogenicity of clinical isolates, isogenic PVL-negative and PVL-positive S. aureus strains, as well as purified PVL, in a mouse acute pneumonia model. Here we show that PVL is sufficient to cause pneumonia and that the expression of this leukotoxin induces global changes in transcriptional levels of genes encoding secreted and cell wall-anchored staphylococcal proteins, including the lung inflammatory factor staphylococcal protein A (Spa).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Labandeira-Rey, Maria -- Couzon, Florence -- Boisset, Sandrine -- Brown, Eric L -- Bes, Michele -- Benito, Yvonne -- Barbu, Elena M -- Vazquez, Vanessa -- Hook, Magnus -- Etienne, Jerome -- Vandenesch, Francois -- Bowden, M Gabriela -- AI020624/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 23;315(5815):1130-3. Epub 2007 Jan 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17234914" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/genetics/metabolism ; Bacterial Toxins/genetics ; Calcium-Binding Proteins/genetics/metabolism ; Disease Models, Animal ; Exotoxins/genetics/*physiology ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Hemorrhage ; Leukocidins/genetics/*physiology ; Lung/microbiology/*pathology ; Methicillin Resistance ; Mice ; Mice, Inbred BALB C ; Necrosis ; Oligonucleotide Array Sequence Analysis ; Pneumonia, Staphylococcal/*microbiology/*pathology ; Staphylococcal Protein A/genetics/*metabolism ; Staphylococcus aureus/genetics/growth & development/metabolism/*pathogenicity ; Transcription, Genetic ; Virulence ; Virulence Factors/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-01-27
    Description: Primary pneumonic plague is transmitted easily, progresses rapidly, and causes high mortality, but the mechanisms by which Yersinia pestis overwhelms the lungs are largely unknown. We show that the plasminogen activator Pla is essential for Y. pestis to cause primary pneumonic plague but is less important for dissemination during pneumonic plague than during bubonic plague. Experiments manipulating its temporal expression showed that Pla allows Y. pestis to replicate rapidly in the airways, causing a lethal fulminant pneumonia; if unexpressed, inflammation is aborted, and lung repair is activated. Inhibition of Pla expression prolonged the survival of animals with the disease, offering a therapeutic option to extend the period during which antibiotics are effective.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lathem, Wyndham W -- Price, Paul A -- Miller, Virginia L -- Goldman, William E -- AI53298/AI/NIAID NIH HHS/ -- DK52574/DK/NIDDK NIH HHS/ -- F32 AI069688-01/AI/NIAID NIH HHS/ -- NRSA T32 GM07067/GM/NIGMS NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):509-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17255510" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Proliferation ; Colony Count, Microbial ; Cytokines/genetics/metabolism ; Female ; Fibrinogen/metabolism ; Gene Expression Regulation ; Gene Expression Regulation, Bacterial ; Lung/immunology/*microbiology/pathology ; Mice ; Mice, Inbred C57BL ; Mutation ; Plague/immunology/*microbiology/pathology ; Plasminogen/metabolism ; Plasminogen Activators/genetics/*metabolism ; Pneumonia, Bacterial/immunology/*microbiology/pathology ; Spleen/microbiology ; Tetracyclines/pharmacology ; Virulence Factors/genetics/metabolism ; Yersinia pestis/enzymology/genetics/growth & development/*pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-07-21
    Description: PDZ domains have long been thought to cluster into discrete functional classes defined by their peptide-binding preferences. We used protein microarrays and quantitative fluorescence polarization to characterize the binding selectivity of 157 mouse PDZ domains with respect to 217 genome-encoded peptides. We then trained a multidomain selectivity model to predict PDZ domain-peptide interactions across the mouse proteome with an accuracy that exceeds many large-scale, experimental investigations of protein-protein interactions. Contrary to the current paradigm, PDZ domains do not fall into discrete classes; instead, they are evenly distributed throughout selectivity space, which suggests that they have been optimized across the proteome to minimize cross-reactivity. We predict that focusing on families of interaction domains, which facilitates the integration of experimentation and modeling, will play an increasingly important role in future investigations of protein function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674608/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674608/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stiffler, Michael A -- Chen, Jiunn R -- Grantcharova, Viara P -- Lei, Ying -- Fuchs, Daniel -- Allen, John E -- Zaslavskaia, Lioudmila A -- MacBeath, Gavin -- 1 RO1 GM072872-01/GM/NIGMS NIH HHS/ -- 5 T32 GM07598-25/GM/NIGMS NIH HHS/ -- R01 GM072872/GM/NIGMS NIH HHS/ -- R01 GM072872-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Jul 20;317(5836):364-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17641200" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Animals ; Computational Biology ; Computer Simulation ; Fluorescence Polarization ; Mice ; Peptides/*metabolism ; Protein Array Analysis ; Protein Binding ; *Protein Structure, Tertiary ; Proteome/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-05-19
    Description: Significant fractions of eukaryotic genomes give rise to RNA, much of which is unannotated and has reduced protein-coding potential. The genomic origins and the associations of human nuclear and cytosolic polyadenylated RNAs longer than 200 nucleotides (nt) and whole-cell RNAs less than 200 nt were investigated in this genome-wide study. Subcellular addresses for nucleotides present in detected RNAs were assigned, and their potential processing into short RNAs was investigated. Taken together, these observations suggest a novel role for some unannotated RNAs as primary transcripts for the production of short RNAs. Three potentially functional classes of RNAs have been identified, two of which are syntenically conserved and correlate with the expression state of protein-coding genes. These data support a highly interleaved organization of the human transcriptome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kapranov, Philipp -- Cheng, Jill -- Dike, Sujit -- Nix, David A -- Duttagupta, Radharani -- Willingham, Aarron T -- Stadler, Peter F -- Hertel, Jana -- Hackermuller, Jorg -- Hofacker, Ivo L -- Bell, Ian -- Cheung, Evelyn -- Drenkow, Jorg -- Dumais, Erica -- Patel, Sandeep -- Helt, Gregg -- Ganesh, Madhavan -- Ghosh, Srinka -- Piccolboni, Antonio -- Sementchenko, Victor -- Tammana, Hari -- Gingeras, Thomas R -- N01-CO-12400/CO/NCI NIH HHS/ -- U01HG003147/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Jun 8;316(5830):1484-8. Epub 2007 May 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Affymetrix Laboratory, Affymetrix, Inc., 3420 Central Expressway, Santa Clara, CA, 95051, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17510325" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cytosol/metabolism ; Exons ; Gene Expression ; Genome ; *Genome, Human ; HeLa Cells ; Humans ; Mice ; Promoter Regions, Genetic ; RNA/*genetics/metabolism ; RNA Precursors/*genetics/metabolism ; RNA, Messenger/*genetics/*metabolism ; Synteny ; Terminator Regions, Genetic ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-04-28
    Description: By screening N-ethyl-N-nitrosourea-mutagenized animals for alterations in rhythms of wheel-running activity, we identified a mouse mutation, after hours (Afh). The mutation, a Cys(358)Ser substitution in Fbxl3, an F-box protein with leucine-rich repeats, results in long free-running rhythms of about 27 hours in homozygotes. Circadian transcriptional and translational oscillations are attenuated in Afh mice. The Afh allele significantly affected Per2 expression and delayed the rate of Cry protein degradation in Per2::Luciferase tissue slices. Our in vivo and in vitro studies reveal a central role for Fbxl3 in mammalian circadian timekeeping.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Godinho, Sofia I H -- Maywood, Elizabeth S -- Shaw, Linda -- Tucci, Valter -- Barnard, Alun R -- Busino, Luca -- Pagano, Michele -- Kendall, Rachel -- Quwailid, Mohamed M -- Romero, M Rosario -- O'neill, John -- Chesham, Johanna E -- Brooker, Debra -- Lalanne, Zuzanna -- Hastings, Michael H -- Nolan, Patrick M -- MC_U105170643/Medical Research Council/United Kingdom -- MC_U142684172/Medical Research Council/United Kingdom -- MC_U142684173/Medical Research Council/United Kingdom -- MC_U142684175/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 May 11;316(5826):897-900. Epub 2007 Apr 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17463252" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; CLOCK Proteins ; COS Cells ; Cell Cycle Proteins/genetics/metabolism ; Cercopithecus aethiops ; *Circadian Rhythm/genetics ; Crosses, Genetic ; Cryptochromes ; F-Box Proteins/*genetics/*physiology ; Female ; Flavoproteins/genetics/metabolism ; Gene Expression Regulation ; Liver/metabolism ; Lung/metabolism ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C3H ; Molecular Sequence Data ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; *Point Mutation ; Suprachiasmatic Nucleus/metabolism ; Trans-Activators/genetics/metabolism ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-03-03
    Description: A hallmark of mammalian immunity is the heterogeneity of cell fate that exists among pathogen-experienced lymphocytes. We show that a dividing T lymphocyte initially responding to a microbe exhibits unequal partitioning of proteins that mediate signaling, cell fate specification, and asymmetric cell division. Asymmetric segregation of determinants appears to be coordinated by prolonged interaction between the T cell and its antigen-presenting cell before division. Additionally, the first two daughter T cells displayed phenotypic and functional indicators of being differentially fated toward effector and memory lineages. These results suggest a mechanism by which a single lymphocyte can apportion diverse cell fates necessary for adaptive immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, John T -- Palanivel, Vikram R -- Kinjyo, Ichiko -- Schambach, Felix -- Intlekofer, Andrew M -- Banerjee, Arnob -- Longworth, Sarah A -- Vinup, Kristine E -- Mrass, Paul -- Oliaro, Jane -- Killeen, Nigel -- Orange, Jordan S -- Russell, Sarah M -- Weninger, Wolfgang -- Reiner, Steven L -- AI007532/AI/NIAID NIH HHS/ -- AI042370/AI/NIAID NIH HHS/ -- AI053827/AI/NIAID NIH HHS/ -- AI055428/AI/NIAID NIH HHS/ -- AI061699/AI/NIAID NIH HHS/ -- AI069380/AI/NIAID NIH HHS/ -- CA114114/CA/NCI NIH HHS/ -- CA87812/CA/NCI NIH HHS/ -- DK007066/DK/NIDDK NIH HHS/ -- GM007170/GM/NIGMS NIH HHS/ -- R01 AI061699/AI/NIAID NIH HHS/ -- T32 AI055428/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Mar 23;315(5819):1687-91. Epub 2007 Mar 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abramson Family Cancer Research Institute and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17332376" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Antigen Presentation ; Antigens, CD/analysis ; Antigens, CD8/analysis ; CD8-Positive T-Lymphocytes/*cytology/*immunology ; Cell Differentiation ; *Cell Division ; Cell Lineage ; Cell Polarity ; Dendritic Cells/immunology ; *Immunologic Memory ; Intracellular Signaling Peptides and Proteins/metabolism ; Listeria monocytogenes/immunology ; Listeriosis/immunology ; Lymphocyte Activation ; Membrane Proteins/analysis ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mitosis ; Nerve Tissue Proteins/analysis ; Protein Kinase C/metabolism ; Receptors, Antigen, T-Cell/immunology ; Receptors, Interferon/analysis ; Signal Transduction ; T-Lymphocyte Subsets/*cytology/*immunology ; T-Lymphocytes, Helper-Inducer/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-09-01
    Description: MicroRNAs (miRNAs) are evolutionarily conserved, 18- to 25-nucleotide, non-protein coding transcripts that posttranscriptionally regulate gene expression during development. miRNAs also occur in postmitotic cells, such as neurons in the mammalian central nervous system, but their function is less well characterized. We investigated the role of miRNAs in mammalian midbrain dopaminergic neurons (DNs). We identified a miRNA, miR-133b, that is specifically expressed in midbrain DNs and is deficient in midbrain tissue from patients with Parkinson's disease. miR-133b regulates the maturation and function of midbrain DNs within a negative feedback circuit that includes the paired-like homeodomain transcription factor Pitx3. We propose a role for this feedback circuit in the fine-tuning of dopaminergic behaviors such as locomotion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782470/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782470/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jongpil -- Inoue, Keiichi -- Ishii, Jennifer -- Vanti, William B -- Voronov, Sergey V -- Murchison, Elizabeth -- Hannon, Gregory -- Abeliovich, Asa -- R01 NS064433/NS/NINDS NIH HHS/ -- R01 NS064433-01/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 31;317(5842):1220-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Pathology and Neurology, Center for Neurobiology and Behavior, and Taub Institute, Columbia University, College of Physicians and Surgeons 15-403, 630 West 168th Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17761882" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/metabolism ; Aged ; Aged, 80 and over ; Animals ; Cell Differentiation ; Cell Line ; Cells, Cultured ; Dopamine/*metabolism ; Embryonic Stem Cells ; *Feedback, Physiological ; Female ; Gene Expression Regulation ; Homeodomain Proteins/*metabolism ; Humans ; Locomotion ; Male ; Mesencephalon/cytology/*metabolism ; Mice ; MicroRNAs/*metabolism ; Middle Aged ; Models, Biological ; Neurons/cytology/*metabolism ; Parkinson Disease/metabolism ; Rats ; Ribonuclease III/genetics/metabolism ; Transcription Factors/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-11-17
    Description: CD4+ T helper 1 (TH1) cells are important mediators of inflammation and are regulated by numerous pathways, including the negative immune receptor Tim-3. We found that Tim-3 is constitutively expressed on cells of the innate immune system in both mice and humans, and that it can synergize with Toll-like receptors. Moreover, an antibody agonist of Tim-3 acted as an adjuvant during induced immune responses, and Tim-3 ligation induced distinct signaling events in T cells and dendritic cells; the latter finding could explain the apparent divergent functions of Tim-3 in these cell types. Thus, by virtue of differential expression on innate versus adaptive immune cells, Tim-3 can either promote or terminate TH1 immunity and may be able to influence a range of inflammatory conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anderson, Ana C -- Anderson, David E -- Bregoli, Lisa -- Hastings, William D -- Kassam, Nasim -- Lei, Charles -- Chandwaskar, Rucha -- Karman, Jozsef -- Su, Ee W -- Hirashima, Mitsuomi -- Bruce, Jeffrey N -- Kane, Lawrence P -- Kuchroo, Vijay K -- Hafler, David A -- R01 AI067544/AI/NIAID NIH HHS/ -- R01 AI067544-01A2/AI/NIAID NIH HHS/ -- R56 AI067544/AI/NIAID NIH HHS/ -- R56 AI067544-01A1/AI/NIAID NIH HHS/ -- R56 AI067544-02/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1141-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Immunology, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006747" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD11b/immunology ; Astrocytes/immunology ; Central Nervous System Neoplasms/immunology ; Dendritic Cells/immunology ; Encephalomyelitis, Autoimmune, Experimental/immunology ; Galectins/immunology ; Glioblastoma/immunology ; Humans ; Immunity, Innate ; Inflammation Mediators/*immunology ; Lipopolysaccharides/immunology ; Macrophages/immunology ; Membrane Proteins/biosynthesis/*immunology ; Mice ; Microglia/immunology ; Multiple Sclerosis/immunology ; Rats ; Receptors, Immunologic/biosynthesis/*immunology ; Receptors, Virus/biosynthesis/*immunology ; Signal Transduction ; T-Lymphocytes/immunology ; Th1 Cells/*immunology ; Toll-Like Receptors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...