ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Ecosystem  (44)
  • American Association for the Advancement of Science (AAAS)  (37)
  • Nature Publishing Group (NPG)  (7)
  • Springer
  • 2005-2009  (44)
  • 1960-1964
  • 2009  (24)
  • 2005  (20)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (37)
  • Nature Publishing Group (NPG)  (7)
  • Springer
Years
  • 2005-2009  (44)
  • 1960-1964
Year
  • 1
    Publication Date: 2009-03-07
    Description: Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 x 10(15) to 1.6 x 10(15) grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Phillips, Oliver L -- Aragao, Luiz E O C -- Lewis, Simon L -- Fisher, Joshua B -- Lloyd, Jon -- Lopez-Gonzalez, Gabriela -- Malhi, Yadvinder -- Monteagudo, Abel -- Peacock, Julie -- Quesada, Carlos A -- van der Heijden, Geertje -- Almeida, Samuel -- Amaral, Ieda -- Arroyo, Luzmila -- Aymard, Gerardo -- Baker, Tim R -- Banki, Olaf -- Blanc, Lilian -- Bonal, Damien -- Brando, Paulo -- Chave, Jerome -- de Oliveira, Atila Cristina Alves -- Cardozo, Nallaret Davila -- Czimczik, Claudia I -- Feldpausch, Ted R -- Freitas, Maria Aparecida -- Gloor, Emanuel -- Higuchi, Niro -- Jimenez, Eliana -- Lloyd, Gareth -- Meir, Patrick -- Mendoza, Casimiro -- Morel, Alexandra -- Neill, David A -- Nepstad, Daniel -- Patino, Sandra -- Penuela, Maria Cristina -- Prieto, Adriana -- Ramirez, Fredy -- Schwarz, Michael -- Silva, Javier -- Silveira, Marcos -- Thomas, Anne Sota -- Steege, Hans Ter -- Stropp, Juliana -- Vasquez, Rodolfo -- Zelazowski, Przemyslaw -- Alvarez Davila, Esteban -- Andelman, Sandy -- Andrade, Ana -- Chao, Kuo-Jung -- Erwin, Terry -- Di Fiore, Anthony -- Honorio C, Euridice -- Keeling, Helen -- Killeen, Tim J -- Laurance, William F -- Pena Cruz, Antonio -- Pitman, Nigel C A -- Nunez Vargas, Percy -- Ramirez-Angulo, Hirma -- Rudas, Agustin -- Salamao, Rafael -- Silva, Natalino -- Terborgh, John -- Torres-Lezama, Armando -- New York, N.Y. -- Science. 2009 Mar 6;323(5919):1344-7. doi: 10.1126/science.1164033.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ecology and Global Change, School of Geography, University of Leeds, Leeds LS2 9JT, UK. o.phillips@leeds.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19265020" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Biomass ; Brazil ; Carbon ; Carbon Dioxide ; Climate ; *Droughts ; *Ecosystem ; South America ; *Trees/growth & development ; Tropical Climate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-01-24
    Description: Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services such as carbon sequestration. Our analyses of longitudinal data from unmanaged old forests in the western United States showed that background (noncatastrophic) mortality rates have increased rapidly in recent decades, with doubling periods ranging from 17 to 29 years among regions. Increases were also pervasive across elevations, tree sizes, dominant genera, and past fire histories. Forest density and basal area declined slightly, which suggests that increasing mortality was not caused by endogenous increases in competition. Because mortality increased in small trees, the overall increase in mortality rates cannot be attributed solely to aging of large trees. Regional warming and consequent increases in water deficits are likely contributors to the increases in tree mortality rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Mantgem, Phillip J -- Stephenson, Nathan L -- Byrne, John C -- Daniels, Lori D -- Franklin, Jerry F -- Fule, Peter Z -- Harmon, Mark E -- Larson, Andrew J -- Smith, Jeremy M -- Taylor, Alan H -- Veblen, Thomas T -- New York, N.Y. -- Science. 2009 Jan 23;323(5913):521-4. doi: 10.1126/science.1165000.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Geological Survey, Western Ecological Research Center, Three Rivers, CA 93271, USA. pvanmantgem@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19164752" target="_blank"〉PubMed〈/a〉
    Keywords: Abies/anatomy & histology/growth & development ; *Climate ; *Coniferophyta/anatomy & histology/growth & development ; *Ecosystem ; Fires ; Models, Statistical ; Nonlinear Dynamics ; Northwestern United States ; Pinus/anatomy & histology/growth & development ; Temperature ; *Trees/growth & development ; Tsuga/anatomy & histology/growth & development ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-07-16
    Description: Long-range atmospheric transport of pollutants is generally assumed to be the main vector for arctic contamination, because local pollution sources are rare. We show that arctic seabirds, which occupy high trophic levels in marine food webs, are the dominant vectors for the transport of marine-derived contaminants to coastal ponds. The sediments of ponds most affected by seabirds had 60 times higher DDT, 25 times higher mercury, and 10 times higher hexachlorobenzene concentrations than nearby control sites. Bird guano greatly stimulates biological productivity in these extreme environments but also serves as a major source of industrial and agricultural pollutants in these remote ecosystems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blais, Jules M -- Kimpe, Lynda E -- McMahon, Dominique -- Keatley, Bronwyn E -- Mallory, Mark L -- Douglas, Marianne S V -- Smol, John P -- New York, N.Y. -- Science. 2005 Jul 15;309(5733):445.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada. jblais@science.uottawa.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16020729" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arctic Regions ; *Birds/physiology ; DDT/analysis ; *Ecosystem ; Environmental Pollutants/*analysis ; Feeding Behavior ; Fresh Water/*chemistry ; Geologic Sediments/*chemistry ; Hexachlorobenzene/analysis ; Hydrocarbons, Chlorinated/analysis ; Mercury/analysis ; Nitrogen Isotopes/analysis ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-04-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernhardt, E S -- Palmer, M A -- Allan, J D -- Alexander, G -- Barnas, K -- Brooks, S -- Carr, J -- Clayton, S -- Dahm, C -- Follstad-Shah, J -- Galat, D -- Gloss, S -- Goodwin, P -- Hart, D -- Hassett, B -- Jenkinson, R -- Katz, S -- Kondolf, G M -- Lake, P S -- Lave, R -- Meyer, J L -- O'donnell, T K -- Pagano, L -- Powell, B -- Sudduth, E -- New York, N.Y. -- Science. 2005 Apr 29;308(5722):636-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15860611" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources/economics ; Costs and Cost Analysis ; *Databases, Factual ; *Ecosystem ; Environment ; Fishes ; *Rivers ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-04-28
    Description: Plant photosynthesis tends to increase with irradiance. However, recent theoretical and observational studies have demonstrated that photosynthesis is also more efficient under diffuse light conditions. Changes in cloud cover or atmospheric aerosol loadings, arising from either volcanic or anthropogenic emissions, alter both the total photosynthetically active radiation reaching the surface and the fraction of this radiation that is diffuse, with uncertain overall effects on global plant productivity and the land carbon sink. Here we estimate the impact of variations in diffuse fraction on the land carbon sink using a global model modified to account for the effects of variations in both direct and diffuse radiation on canopy photosynthesis. We estimate that variations in diffuse fraction, associated largely with the 'global dimming' period, enhanced the land carbon sink by approximately one-quarter between 1960 and 1999. However, under a climate mitigation scenario for the twenty-first century in which sulphate aerosols decline before atmospheric CO(2) is stabilized, this 'diffuse-radiation' fertilization effect declines rapidly to near zero by the end of the twenty-first century.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mercado, Lina M -- Bellouin, Nicolas -- Sitch, Stephen -- Boucher, Olivier -- Huntingford, Chris -- Wild, Martin -- Cox, Peter M -- England -- Nature. 2009 Apr 23;458(7241):1014-7. doi: 10.1038/nature07949.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK. lmme@ceh.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19396143" target="_blank"〉PubMed〈/a〉
    Keywords: Aerosols/analysis/chemistry ; Atmosphere/*chemistry ; Carbon/*metabolism ; Carbon Dioxide/analysis ; *Darkness ; *Ecosystem ; Greenhouse Effect ; History, 20th Century ; History, 21st Century ; Photosynthesis/*radiation effects ; Plants/metabolism/*radiation effects ; Sulfates/metabolism ; *Sunlight ; Volcanic Eruptions
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-09-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rockstrom, Johan -- Steffen, Will -- Noone, Kevin -- Persson, Asa -- Chapin, F Stuart 3rd -- Lambin, Eric F -- Lenton, Timothy M -- Scheffer, Marten -- Folke, Carl -- Schellnhuber, Hans Joachim -- Nykvist, Bjorn -- de Wit, Cynthia A -- Hughes, Terry -- van der Leeuw, Sander -- Rodhe, Henning -- Sorlin, Sverker -- Snyder, Peter K -- Costanza, Robert -- Svedin, Uno -- Falkenmark, Malin -- Karlberg, Louise -- Corell, Robert W -- Fabry, Victoria J -- Hansen, James -- Walker, Brian -- Liverman, Diana -- Richardson, Katherine -- Crutzen, Paul -- Foley, Jonathan A -- England -- Nature. 2009 Sep 24;461(7263):472-5. doi: 10.1038/461472a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stockholm Resilience Centre, Stockholm University, Kraftriket 2B, 10691 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779433" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; Civilization ; Conservation of Natural Resources/*methods/trends ; *Earth (Planet) ; Ecology/*methods/*trends ; *Ecosystem ; Extinction, Biological ; Fossils ; Green Chemistry Technology/*methods/trends ; Greenhouse Effect ; History, 20th Century ; History, 21st Century ; History, Ancient ; *Human Activities/history ; Humans ; Nitrogen/metabolism ; Phosphorus/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-04-03
    Description: Explaining the ecological causes of evolutionary diversification is a major focus of biology, but surprisingly little has been said about the effects of evolutionary diversification on ecosystems. The number of species in an ecosystem and their traits are key predictors of many ecosystem-level processes, such as rates of productivity, biomass sequestration and decomposition. Here we demonstrate short-term ecosystem-level effects of adaptive radiation in the threespine stickleback (Gasterosteus aculeatus) over the past 10,000 years. These fish have undergone recent parallel diversification in several lakes in coastal British Columbia, resulting in the formation of two specialized species (benthic and limnetic) from a generalist ancestor. Using a mesocosm experiment, we demonstrate that this diversification has strong effects on ecosystems, affecting prey community structure, total primary production, and the nature of dissolved organic materials that regulate the spectral properties of light transmission in the system. However, these ecosystem effects do not simply increase in their relative strength with increasing specialization and species richness; instead, they reflect the complex and indirect consequences of ecosystem engineering by sticklebacks. It is well known that ecological factors influence adaptive radiation. We demonstrate that adaptive radiation, even over short timescales, can have profound effects on ecosystems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harmon, Luke J -- Matthews, Blake -- Des Roches, Simone -- Chase, Jonathan M -- Shurin, Jonathan B -- Schluter, Dolph -- England -- Nature. 2009 Apr 30;458(7242):1167-70. doi: 10.1038/nature07974. Epub 2009 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844-3051, USA. lukeh@uidaho.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19339968" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Biological Evolution ; Biomass ; British Columbia ; *Ecosystem ; Fishes/*classification/*physiology ; Food Chain ; Fresh Water ; Genetic Speciation ; Models, Biological ; Population Density ; Predatory Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Louys, Julien -- Bishop, Laura C -- Wilkinson, David M -- England -- Nature. 2009 Dec 17;462(7275):847. doi: 10.1038/462847b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016575" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Ecology/*trends ; *Ecosystem ; Fossils ; Paleontology/*trends ; Research/*trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-02-17
    Description: How and why organisms are distributed as they are has long intrigued evolutionary biologists. The tendency for species to retain their ancestral ecology has been demonstrated in distributions on local and regional scales, but the extent of ecological conservatism over tens of millions of years and across continents has not been assessed. Here we show that biome stasis at speciation has outweighed biome shifts by a ratio of more than 25:1, by inferring ancestral biomes for an ecologically diverse sample of more than 11,000 plant species from around the Southern Hemisphere. Stasis was also prevalent in transocean colonizations. Availability of a suitable biome could have substantially influenced which lineages establish on more than one landmass, in addition to the influence of the rarity of the dispersal events themselves. Conversely, the taxonomic composition of biomes has probably been strongly influenced by the rarity of species' transitions between biomes. This study has implications for the future because if clades have inherently limited capacity to shift biomes, then their evolutionary potential could be strongly compromised by biome contraction as climate changes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crisp, Michael D -- Arroyo, Mary T K -- Cook, Lyn G -- Gandolfo, Maria A -- Jordan, Gregory J -- McGlone, Matt S -- Weston, Peter H -- Westoby, Mark -- Wilf, Peter -- Linder, H Peter -- England -- Nature. 2009 Apr 9;458(7239):754-6. doi: 10.1038/nature07764. Epub 2009 Feb 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Botany and Zoology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia. mike.crisp@anu.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19219025" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Evolution ; Conservation of Natural Resources ; Demography ; *Ecosystem ; Geography ; Phylogeny ; *Plant Physiological Phenomena ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-12-17
    Description: Biota can be described in terms of elemental composition, expressed as an atomic ratio of carbon:nitrogen:phosphorus (refs 1-3). The elemental stoichiometry of microoorganisms is fundamental for understanding the production dynamics and biogeochemical cycles of ecosystems because microbial biomass is the trophic base of detrital food webs. Here we show that heterotrophic microbial communities of diverse composition from terrestrial soils and freshwater sediments share a common functional stoichiometry in relation to organic nutrient acquisition. The activities of four enzymes that catalyse the hydrolysis of assimilable products from the principal environmental sources of C, N and P show similar scaling relationships over several orders of magnitude, with a mean ratio for C:N:P activities near 1:1:1 in all habitats. We suggest that these ecoenzymatic ratios reflect the equilibria between the elemental composition of microbial biomass and detrital organic matter and the efficiencies of microbial nutrient assimilation and growth. Because ecoenzymatic activities intersect the stoichiometric and metabolic theories of ecology, they provide a functional measure of the threshold at which control of community metabolism shifts from nutrient to energy flow.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sinsabaugh, Robert L -- Hill, Brian H -- Follstad Shah, Jennifer J -- England -- Nature. 2009 Dec 10;462(7274):795-8. doi: 10.1038/nature08632.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, University of New Mexico, Albuquerque, New Mexico 871312, USA. rlsinsab@unm.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010687" target="_blank"〉PubMed〈/a〉
    Keywords: Biomass ; Carbon/*metabolism ; *Ecosystem ; Enzyme Assays ; Enzymes/*metabolism ; Food Chain ; Geologic Sediments/*chemistry/microbiology ; Nitrogen/*metabolism ; Phosphorus/*metabolism ; Plants/metabolism ; Rivers ; *Soil Microbiology ; United States ; Wetlands
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...