ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (49)
  • Himalayas
  • 2000-2004  (49)
  • 1960-1964
  • 2000  (49)
  • 1
    Publication Date: 2000-03-17
    Description: Allergic asthma is caused by the aberrant expansion in the lung of T helper cells that produce type 2 (TH2) cytokines and is characterized by infiltration of eosinophils and bronchial hyperreactivity. This disease is often triggered by mast cells activated by immunoglobulin E (IgE)-mediated allergic challenge. Activated mast cells release various chemical mediators, including prostaglandin D2 (PGD2), whose role in allergic asthma has now been investigated by the generation of mice deficient in the PGD receptor (DP). Sensitization and aerosol challenge of the homozygous mutant (DP-/-) mice with ovalbumin (OVA) induced increases in the serum concentration of IgE similar to those in wild-type mice subjected to this model of asthma. However, the concentrations of TH2 cytokines and the extent of lymphocyte accumulation in the lung of OVA-challenged DP-/- mice were greatly reduced compared with those in wild-type animals. Moreover, DP-/- mice showed only marginal infiltration of eosinophils and failed to develop airway hyperreactivity. Thus, PGD2 functions as a mast cell-derived mediator to trigger asthmatic responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsuoka, T -- Hirata, M -- Tanaka, H -- Takahashi, Y -- Murata, T -- Kabashima, K -- Sugimoto, Y -- Kobayashi, T -- Ushikubi, F -- Aze, Y -- Eguchi, N -- Urade, Y -- Yoshida, N -- Kimura, K -- Mizoguchi, A -- Honda, Y -- Nagai, H -- Narumiya, S -- New York, N.Y. -- Science. 2000 Mar 17;287(5460):2013-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10720327" target="_blank"〉PubMed〈/a〉
    Keywords: Allergens/immunology ; Animals ; Asthma/immunology/metabolism/pathology/*physiopathology ; Bronchial Hyperreactivity ; Bronchoalveolar Lavage Fluid/cytology/immunology ; Crosses, Genetic ; Female ; Gene Targeting ; Humans ; Immunoglobulin E/blood ; Interferon-gamma/metabolism ; Interleukins/metabolism ; Lung/immunology/metabolism/pathology ; Lymphocytes/immunology ; Male ; Mast Cells/metabolism ; Mice ; Mice, Inbred C57BL ; Mucus/secretion ; Ovalbumin/immunology ; Prostaglandin D2/metabolism/*physiology ; *Receptors, Immunologic ; Receptors, Prostaglandin/genetics/metabolism/*physiology ; Respiratory Mucosa/secretion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-03-25
    Description: The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adams, M D -- Celniker, S E -- Holt, R A -- Evans, C A -- Gocayne, J D -- Amanatides, P G -- Scherer, S E -- Li, P W -- Hoskins, R A -- Galle, R F -- George, R A -- Lewis, S E -- Richards, S -- Ashburner, M -- Henderson, S N -- Sutton, G G -- Wortman, J R -- Yandell, M D -- Zhang, Q -- Chen, L X -- Brandon, R C -- Rogers, Y H -- Blazej, R G -- Champe, M -- Pfeiffer, B D -- Wan, K H -- Doyle, C -- Baxter, E G -- Helt, G -- Nelson, C R -- Gabor, G L -- Abril, J F -- Agbayani, A -- An, H J -- Andrews-Pfannkoch, C -- Baldwin, D -- Ballew, R M -- Basu, A -- Baxendale, J -- Bayraktaroglu, L -- Beasley, E M -- Beeson, K Y -- Benos, P V -- Berman, B P -- Bhandari, D -- Bolshakov, S -- Borkova, D -- Botchan, M R -- Bouck, J -- Brokstein, P -- Brottier, P -- Burtis, K C -- Busam, D A -- Butler, H -- Cadieu, E -- Center, A -- Chandra, I -- Cherry, J M -- Cawley, S -- Dahlke, C -- Davenport, L B -- Davies, P -- de Pablos, B -- Delcher, A -- Deng, Z -- Mays, A D -- Dew, I -- Dietz, S M -- Dodson, K -- Doup, L E -- Downes, M -- Dugan-Rocha, S -- Dunkov, B C -- Dunn, P -- Durbin, K J -- Evangelista, C C -- Ferraz, C -- Ferriera, S -- Fleischmann, W -- Fosler, C -- Gabrielian, A E -- Garg, N S -- Gelbart, W M -- Glasser, K -- Glodek, A -- Gong, F -- Gorrell, J H -- Gu, Z -- Guan, P -- Harris, M -- Harris, N L -- Harvey, D -- Heiman, T J -- Hernandez, J R -- Houck, J -- Hostin, D -- Houston, K A -- Howland, T J -- Wei, M H -- Ibegwam, C -- Jalali, M -- Kalush, F -- Karpen, G H -- Ke, Z -- Kennison, J A -- Ketchum, K A -- Kimmel, B E -- Kodira, C D -- Kraft, C -- Kravitz, S -- Kulp, D -- Lai, Z -- Lasko, P -- Lei, Y -- Levitsky, A A -- Li, J -- Li, Z -- Liang, Y -- Lin, X -- Liu, X -- Mattei, B -- McIntosh, T C -- McLeod, M P -- McPherson, D -- Merkulov, G -- Milshina, N V -- Mobarry, C -- Morris, J -- Moshrefi, A -- Mount, S M -- Moy, M -- Murphy, B -- Murphy, L -- Muzny, D M -- Nelson, D L -- Nelson, D R -- Nelson, K A -- Nixon, K -- Nusskern, D R -- Pacleb, J M -- Palazzolo, M -- Pittman, G S -- Pan, S -- Pollard, J -- Puri, V -- Reese, M G -- Reinert, K -- Remington, K -- Saunders, R D -- Scheeler, F -- Shen, H -- Shue, B C -- Siden-Kiamos, I -- Simpson, M -- Skupski, M P -- Smith, T -- Spier, E -- Spradling, A C -- Stapleton, M -- Strong, R -- Sun, E -- Svirskas, R -- Tector, C -- Turner, R -- Venter, E -- Wang, A H -- Wang, X -- Wang, Z Y -- Wassarman, D A -- Weinstock, G M -- Weissenbach, J -- Williams, S M -- WoodageT -- Worley, K C -- Wu, D -- Yang, S -- Yao, Q A -- Ye, J -- Yeh, R F -- Zaveri, J S -- Zhan, M -- Zhang, G -- Zhao, Q -- Zheng, L -- Zheng, X H -- Zhong, F N -- Zhong, W -- Zhou, X -- Zhu, S -- Zhu, X -- Smith, H O -- Gibbs, R A -- Myers, E W -- Rubin, G M -- Venter, J C -- P50-HG00750/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2185-95.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10731132" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport/genetics ; Chromatin/genetics ; Cloning, Molecular ; Computational Biology ; Contig Mapping ; Cytochrome P-450 Enzyme System/genetics ; DNA Repair/genetics ; DNA Replication/genetics ; Drosophila melanogaster/*genetics/metabolism ; Euchromatin ; Gene Library ; Genes, Insect ; *Genome ; Heterochromatin/genetics ; Insect Proteins/chemistry/genetics/physiology ; Nuclear Proteins/genetics ; Protein Biosynthesis ; *Sequence Analysis, DNA ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-10-29
    Description: Lentiviral delivery of glial cell line-derived neurotrophic factor (lenti-GDNF) was tested for its trophic effects upon degenerating nigrostriatal neurons in nonhuman primate models of Parkinson's disease (PD). We injected lenti-GDNF into the striatum and substantia nigra of nonlesioned aged rhesus monkeys or young adult rhesus monkeys treated 1 week prior with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Extensive GDNF expression with anterograde and retrograde transport was seen in all animals. In aged monkeys, lenti-GDNF augmented dopaminergic function. In MPTP-treated monkeys, lenti-GDNF reversed functional deficits and completely prevented nigrostriatal degeneration. Additionally, lenti-GDNF injections to intact rhesus monkeys revealed long-term gene expression (8 months). In MPTP-treated monkeys, lenti-GDNF treatment reversed motor deficits in a hand-reach task. These data indicate that GDNF delivery using a lentiviral vector system can prevent nigrostriatal degeneration and induce regeneration in primate models of PD and might be a viable therapeutic strategy for PD patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kordower, J H -- Emborg, M E -- Bloch, J -- Ma, S Y -- Chu, Y -- Leventhal, L -- McBride, J -- Chen, E Y -- Palfi, S -- Roitberg, B Z -- Brown, W D -- Holden, J E -- Pyzalski, R -- Taylor, M D -- Carvey, P -- Ling, Z -- Trono, D -- Hantraye, P -- Deglon, N -- Aebischer, P -- NS40578/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2000 Oct 27;290(5492):767-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurological Sciences, Rush Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA. jkordowe@rush.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11052933" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine ; Aging ; Animals ; Antigens, CD/analysis ; Dihydroxyphenylalanine/*analogs & derivatives/metabolism ; Disease Models, Animal ; Dopamine/*metabolism ; Female ; Gene Expression ; *Genetic Therapy ; Genetic Vectors ; Glial Cell Line-Derived Neurotrophic Factor ; Lentivirus/genetics ; Macaca mulatta ; Neostriatum/metabolism/pathology ; Nerve Degeneration/*prevention & control ; *Nerve Growth Factors ; Nerve Tissue Proteins/*genetics/metabolism/therapeutic use ; Neurons/enzymology ; Parkinson Disease/metabolism/pathology/physiopathology/*therapy ; Parkinsonian Disorders/metabolism/pathology/physiopathology/therapy ; Psychomotor Performance ; Substantia Nigra/metabolism/pathology ; Tyrosine 3-Monooxygenase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-08-19
    Description: The adenomatous polyposis coli gene (APC) is mutated in familial adenomatous polyposis and in sporadic colorectal tumors. Here the APC gene product is shown to bind through its armadillo repeat domain to a Rac-specific guanine nucleotide exchange factor (GEF), termed Asef. Endogenous APC colocalized with Asef in mouse colon epithelial cells and neuronal cells. Furthermore, APC enhanced the GEF activity of Asef and stimulated Asef-mediated cell flattening, membrane ruffling, and lamellipodia formation in MDCK cells. These results suggest that the APC-Asef complex may regulate the actin cytoskeletal network, cell morphology and migration, and neuronal function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawasaki, Y -- Senda, T -- Ishidate, T -- Koyama, R -- Morishita, T -- Iwayama, Y -- Higuchi, O -- Akiyama, T -- New York, N.Y. -- Science. 2000 Aug 18;289(5482):1194-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10947987" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Amino Acid Sequence ; Animals ; Brain/metabolism ; Cell Line ; Cell Membrane/ultrastructure ; Cell Size ; Colon/cytology/metabolism ; Cytoplasm/metabolism ; Cytoskeletal Proteins/*metabolism ; Guanine Nucleotide Exchange Factors/chemistry/genetics/*metabolism ; Guanosine Diphosphate/metabolism ; Humans ; Immunoblotting ; Intestinal Mucosa/cytology/metabolism ; Mice ; Molecular Sequence Data ; Neurons/metabolism ; Precipitin Tests ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/metabolism ; Rho Guanine Nucleotide Exchange Factors ; Signal Transduction ; *Trans-Activators ; Transfection ; Two-Hybrid System Techniques ; beta Catenin ; rac GTP-Binding Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-02-05
    Description: Small guanosine triphosphatases, typified by the mammalian Ras proteins, play major roles in the regulation of numerous cellular pathways. A subclass of evolutionarily conserved Ras-like proteins was identified, members of which differ from other Ras proteins in containing amino acids at positions 12 and 61 that are similar to those present in the oncogenic forms of Ras. These proteins, kappaB-Ras1 and kappaB-Ras2, interact with the PEST domains of IkappaBalpha and IkappaBbeta [inhibitors of the transcription factor nuclear factor kappa B (NF-kappaB)] and decrease their rate of degradation. In cells, kappaB-Ras proteins are associated only with NF-kappaB:IkappaBbeta complexes and therefore may provide an explanation for the slower rate of degradation of IkappaBbeta compared with IkappaBalpha.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fenwick, C -- Na, S Y -- Voll, R E -- Zhong, H -- Im, S Y -- Lee, J W -- Ghosh, S -- New York, N.Y. -- Science. 2000 Feb 4;287(5454):869-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10657303" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Cell Line ; Guanosine Triphosphate/metabolism ; Humans ; I-kappa B Proteins/*metabolism ; Mice ; Molecular Sequence Data ; NF-kappa B/metabolism ; Phosphorylation ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Transduction ; Transcription Factor RelA ; Transfection ; Tumor Necrosis Factor-alpha/metabolism/pharmacology ; Two-Hybrid System Techniques ; ras Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-03-10
    Description: Chk2 is a protein kinase that is activated in response to DNA damage and may regulate cell cycle arrest. We generated Chk2-deficient mouse cells by gene targeting. Chk2-/- embryonic stem cells failed to maintain gamma-irradiation-induced arrest in the G2 phase of the cell cycle. Chk2-/- thymocytes were resistant to DNA damage-induced apoptosis. Chk2-/- cells were defective for p53 stabilization and for induction of p53-dependent transcripts such as p21 in response to gamma irradiation. Reintroduction of the Chk2 gene restored p53-dependent transcription in response to gamma irradiation. Chk2 directly phosphorylated p53 on serine 20, which is known to interfere with Mdm2 binding. This provides a mechanism for increased stability of p53 by prevention of ubiquitination in response to DNA damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hirao, A -- Kong, Y Y -- Matsuoka, S -- Wakeham, A -- Ruland, J -- Yoshida, H -- Liu, D -- Elledge, S J -- Mak, T W -- GM44664/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1824-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Amgen Institute, Ontario Cancer Institute, and Departments of Medical Biophysics and Immunology, University of Toronto, 620 University Avenue, Suite 706, Toronto, Ontario, M5G 2C1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710310" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins ; Checkpoint Kinase 2 ; *DNA Damage ; DNA-Binding Proteins ; G1 Phase ; G2 Phase ; Gamma Rays ; Gene Expression Regulation ; Gene Targeting ; Genes, Tumor Suppressor ; Genes, p53 ; Humans ; *Interphase ; Mice ; *Nuclear Proteins ; Phosphorylation ; Phosphoserine/metabolism ; *Protein Kinases ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-mdm2 ; Stem Cells/cytology/metabolism ; T-Lymphocytes/cytology ; Transcription, Genetic ; Tumor Suppressor Protein p53/*metabolism ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2000-07-21
    Description: The Meishan section across the Permian-Triassic boundary in South China is the most thoroughly investigated in the world. A statistical analysis of the occurrences of 162 genera and 333 species confirms a sudden extinction event at 251.4 million years ago, coincident with a dramatic depletion of delta13C(carbonate) and an increase in microspherules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jin, Y G -- Wang, Y -- Wang, W -- Shang, Q H -- Cao, C Q -- Erwin, D H -- New York, N.Y. -- Science. 2000 Jul 21;289(5478):432-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nanjing Institute of Geology and Palaeontology, Academia Sinica, Nanjing 210008, China. ygjin@public1.ptt.js.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10903200" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; China ; *Eukaryota ; *Fishes ; *Fossils ; Geologic Sediments ; *Invertebrates ; *Marine Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2000-01-05
    Description: Mice lacking mCry1 and mCry2 are behaviorally arrhythmic. As shown here, cyclic expression of the clock genes mPer1 and mPer2 (mammalian Period genes 1 and 2) in the suprachiasmatic nucleus and peripheral tissues is abolished and mPer1 and mPer2 mRNA levels are constitutively high. These findings indicate that the biological clock is eliminated in the absence of both mCRY1 and mCRY2 (mammalian cryptochromes 1 and 2) and support the idea that mammalian CRY proteins act in the negative limb of the circadian feedback loop. The mCry double-mutant mice retain the ability to have mPer1 and mPer2 expression induced by a brief light stimulus known to phase-shift the biological clock in wild-type animals. Thus, mCRY1 and mCRY2 are dispensable for light-induced phase shifting of the biological clock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okamura, H -- Miyake, S -- Sumi, Y -- Yamaguchi, S -- Yasui, A -- Muijtjens, M -- Hoeijmakers, J H -- van der Horst, G T -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2531-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Brain Science, Kobe University School of Medicine, Kobe 650-0017, Japan. okamurah@kobe-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617474" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/*physiology ; Cell Cycle Proteins ; Circadian Rhythm/*physiology ; Cryptochromes ; *Drosophila Proteins ; *Eye Proteins ; Feedback ; Flavoproteins/genetics/*physiology ; Gene Expression Regulation ; In Situ Hybridization ; *Light ; Liver/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mutation ; Nuclear Proteins/*genetics ; Period Circadian Proteins ; *Photoreceptor Cells, Invertebrate ; Polymerase Chain Reaction ; RNA, Messenger/genetics/metabolism ; Receptors, G-Protein-Coupled ; Retina/metabolism ; Suprachiasmatic Nucleus/metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2000-01-15
    Description: Murine T10 and T22 are highly related nonclassical major histocompatibility complex (MHC) class Ib proteins that bind to certain gammadelta T cell receptors (TCRs) in the absence of other components. The crystal structure of T22b at 3.1 angstroms reveals similarities to MHC class I molecules, but one side of the normal peptide-binding groove is severely truncated, which allows direct access to the beta-sheet floor. Potential gammadelta TCR-binding sites can be inferred from functional mapping of T10 and T22 point mutants and allelic variants. Thus, T22 represents an unusual variant of the MHC-like fold and indicates that gammadelta and alphabeta TCRs interact differently with their respective MHC ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wingren, C -- Crowley, M P -- Degano, M -- Chien, Y -- Wilson, I A -- AI33431/AI/NIAID NIH HHS/ -- CA58896/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Jan 14;287(5451):310-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10634787" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Substitution ; Animals ; Binding Sites ; Crystallography, X-Ray ; Glycosylation ; Histocompatibility Antigens Class I/*chemistry ; Hydrogen Bonding ; Ligands ; Mice ; Models, Molecular ; Point Mutation ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry/immunology/metabolism ; Receptors, Antigen, T-Cell, gamma-delta/immunology/*metabolism ; Surface Properties ; beta 2-Microglobulin/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2000-02-11
    Description: Gradients of chemoattractants elicit signaling events at the leading edge of a cell even though chemoattractant receptors are uniformly distributed on the cell surface. In highly polarized Dictyostelium discoideum amoebas, membrane-associated betagamma subunits of heterotrimeric guanine nucleotide-binding proteins (G proteins) were localized in a shallow anterior-posterior gradient. A uniformly applied chemoattractant generated binding sites for pleckstrin homology (PH) domains on the inner surface of the membrane in a pattern similar to that of the Gbetagamma subunits. Loss of cell polarity resulted in uniform distribution of both the Gbetagamma subunits and the sensitivity of PH domain recruitment. These observations indicate that Gbetagamma subunits are not sufficiently localized to restrict signaling events to the leading edge but that their distribution may determine the relative chemotactic sensitivity of polarized cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jin, T -- Zhang, N -- Long, Y -- Parent, C A -- Devreotes, P N -- GM-28007/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Feb 11;287(5455):1034-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10669414" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Membrane/metabolism ; Cell Polarity ; Chemotactic Factors/pharmacology ; Chemotaxis/*physiology ; Cyclic AMP/pharmacology ; Dictyostelium/metabolism/*physiology ; *GTP-Binding Protein beta Subunits ; *GTP-Binding Protein gamma Subunits ; GTP-Binding Proteins/*metabolism ; *Heterotrimeric GTP-Binding Proteins ; Recombinant Fusion Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...