ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Protein Structure, Tertiary  (43)
  • American Association for the Advancement of Science (AAAS)  (43)
  • American Association for the Advancement of Science
  • American Institute of Physics (AIP)
  • Springer Nature
  • 2000-2004  (43)
  • 1995-1999
  • 1980-1984
  • 1940-1944
  • 2002  (28)
  • 2000  (15)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (43)
  • American Association for the Advancement of Science
  • American Institute of Physics (AIP)
  • Springer Nature
Years
  • 2000-2004  (43)
  • 1995-1999
  • 1980-1984
  • 1940-1944
Year
  • 1
    Publication Date: 2002-05-04
    Description: Extracts of the resin of the guggul tree (Commiphora mukul) lower LDL (low-density lipoprotein) cholesterol levels in humans. The plant sterol guggulsterone [4,17(20)-pregnadiene-3,16-dione] is the active agent in this extract. We show that guggulsterone is a highly efficacious antagonist of the farnesoid X receptor (FXR), a nuclear hormone receptor that is activated by bile acids. Guggulsterone treatment decreases hepatic cholesterol in wild-type mice fed a high-cholesterol diet but is not effective in FXR-null mice. Thus, we propose that inhibition of FXR activation is the basis for the cholesterol-lowering activity of guggulsterone. Other natural products with specific biologic effects may modulate the activity of FXR or other relatively promiscuous nuclear hormone receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Urizar, Nancy L -- Liverman, Amy B -- Dodds, D'Nette T -- Silva, Frank Valentin -- Ordentlich, Peter -- Yan, Yingzhuo -- Gonzalez, Frank J -- Heyman, Richard A -- Mangelsdorf, David J -- Moore, David D -- New York, N.Y. -- Science. 2002 May 31;296(5573):1703-6. Epub 2002 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11988537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Caco-2 Cells ; Carrier Proteins/genetics/metabolism ; Cells, Cultured ; Chenodeoxycholic Acid/pharmacology ; Cholesterol/*metabolism ; Cholesterol, Dietary/administration & dosage ; DNA/metabolism ; DNA-Binding Proteins/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Hepatocytes/metabolism ; Histone Acetyltransferases ; Humans ; *Hydroxysteroid Dehydrogenases ; Hypolipidemic Agents/metabolism/*pharmacology ; Ligands ; Liver/metabolism ; *Membrane Glycoproteins ; Mice ; Nuclear Receptor Coactivator 1 ; Pregnenediones/metabolism/*pharmacology ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors/genetics/metabolism ; Receptors, Steroid/antagonists & inhibitors/metabolism ; Transcription Factors/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Transcriptional Activation/drug effects ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-02-02
    Description: The hypoxia-inducible factors (HIFs) 1alpha and 2alpha are key mammalian transcription factors that exhibit dramatic increases in both protein stability and intrinsic transcriptional potency during low-oxygen stress. This increased stability is due to the absence of proline hydroxylation, which in normoxia promotes binding of HIF to the von Hippel-Lindau (VHL tumor suppressor) ubiquitin ligase. We now show that hypoxic induction of the COOH-terminal transactivation domain (CAD) of HIF occurs through abrogation of hydroxylation of a conserved asparagine in the CAD. Inhibitors of Fe(II)- and 2-oxoglutarate-dependent dioxygenases prevented hydroxylation of the Asn, thus allowing the CAD to interact with the p300 transcription coactivator. Replacement of the conserved Asn by Ala resulted in constitutive p300 interaction and strong transcriptional activity. Full induction of HIF-1alpha and -2alpha, therefore, relies on the abrogation of both Pro and Asn hydroxylation, which during normoxia occur at the degradation and COOH-terminal transactivation domains, respectively.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lando, David -- Peet, Daniel J -- Whelan, Dean A -- Gorman, Jeffrey J -- Whitelaw, Murray L -- New York, N.Y. -- Science. 2002 Feb 1;295(5556):858-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biosciences (Biochemistry), Adelaide University, SA 5005, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11823643" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Asparagine/*metabolism ; Basic Helix-Loop-Helix Transcription Factors ; Cell Hypoxia/*physiology ; Cell Line ; Humans ; Hydroxylation ; Hypoxia-Inducible Factor 1, alpha Subunit ; Mass Spectrometry ; Mice ; Mixed Function Oxygenases/metabolism ; Molecular Sequence Data ; Mutation ; Oxygen/*physiology ; Proline/metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-03-24
    Description: A comparative analysis of the genomes of Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae-and the proteins they are predicted to encode-was undertaken in the context of cellular, developmental, and evolutionary processes. The nonredundant protein sets of flies and worms are similar in size and are only twice that of yeast, but different gene families are expanded in each genome, and the multidomain proteins and signaling pathways of the fly and worm are far more complex than those of yeast. The fly has orthologs to 177 of the 289 human disease genes examined and provides the foundation for rapid analysis of some of the basic processes involved in human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754258/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754258/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rubin, G M -- Yandell, M D -- Wortman, J R -- Gabor Miklos, G L -- Nelson, C R -- Hariharan, I K -- Fortini, M E -- Li, P W -- Apweiler, R -- Fleischmann, W -- Cherry, J M -- Henikoff, S -- Skupski, M P -- Misra, S -- Ashburner, M -- Birney, E -- Boguski, M S -- Brody, T -- Brokstein, P -- Celniker, S E -- Chervitz, S A -- Coates, D -- Cravchik, A -- Gabrielian, A -- Galle, R F -- Gelbart, W M -- George, R A -- Goldstein, L S -- Gong, F -- Guan, P -- Harris, N L -- Hay, B A -- Hoskins, R A -- Li, J -- Li, Z -- Hynes, R O -- Jones, S J -- Kuehl, P M -- Lemaitre, B -- Littleton, J T -- Morrison, D K -- Mungall, C -- O'Farrell, P H -- Pickeral, O K -- Shue, C -- Vosshall, L B -- Zhang, J -- Zhao, Q -- Zheng, X H -- Lewis, S -- P4IHG00739/HG/NHGRI NIH HHS/ -- P50HG00750/HG/NHGRI NIH HHS/ -- R01 GM037193/GM/NIGMS NIH HHS/ -- R01 GM037193-14/GM/NIGMS NIH HHS/ -- R01 GM037193-15/GM/NIGMS NIH HHS/ -- R01 GM060988/GM/NIGMS NIH HHS/ -- R01 GM060988-01/GM/NIGMS NIH HHS/ -- R01 NS040296/NS/NINDS NIH HHS/ -- R01 NS040296-01/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2204-15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular and Cell Biology, Berkeley Drosophila Genome Project, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10731134" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/genetics ; Biological Evolution ; Caenorhabditis elegans/chemistry/*genetics/physiology ; Cell Adhesion/genetics ; Cell Cycle/genetics ; Drosophila melanogaster/chemistry/*genetics/physiology ; Fungal Proteins/chemistry/genetics ; Genes, Duplicate ; Genetic Diseases, Inborn/genetics ; Genetics, Medical ; *Genome ; Helminth Proteins/chemistry/genetics ; Humans ; Immunity/genetics ; Insect Proteins/chemistry/genetics ; Multigene Family ; Neoplasms/genetics ; Protein Structure, Tertiary ; *Proteome ; Saccharomyces cerevisiae/chemistry/*genetics/physiology ; Signal Transduction/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-10-05
    Description: Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small "microsyntenic" clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zdobnov, Evgeny M -- von Mering, Christian -- Letunic, Ivica -- Torrents, David -- Suyama, Mikita -- Copley, Richard R -- Christophides, George K -- Thomasova, Dana -- Holt, Robert A -- Subramanian, G Mani -- Mueller, Hans-Michael -- Dimopoulos, George -- Law, John H -- Wells, Michael A -- Birney, Ewan -- Charlab, Rosane -- Halpern, Aaron L -- Kokoza, Elena -- Kraft, Cheryl L -- Lai, Zhongwu -- Lewis, Suzanna -- Louis, Christos -- Barillas-Mury, Carolina -- Nusskern, Deborah -- Rubin, Gerald M -- Salzberg, Steven L -- Sutton, Granger G -- Topalis, Pantelis -- Wides, Ron -- Wincker, Patrick -- Yandell, Mark -- Collins, Frank H -- Ribeiro, Jose -- Gelbart, William M -- Kafatos, Fotis C -- Bork, Peer -- New York, N.Y. -- Science. 2002 Oct 4;298(5591):149-59.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12364792" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/chemistry/*genetics/physiology ; Biological Evolution ; Chromosome Inversion ; Chromosomes/genetics ; Cluster Analysis ; Dosage Compensation, Genetic ; Drosophila Proteins/chemistry/genetics/physiology ; Drosophila melanogaster/chemistry/*genetics/physiology ; Exons ; Gene Order ; Genes, Insect ; *Genome ; Insect Proteins/chemistry/genetics/physiology ; Introns ; Physical Chromosome Mapping ; Protein Structure, Tertiary ; *Proteome ; Pseudogenes ; Sequence Homology, Nucleic Acid ; Species Specificity ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-31
    Description: All cellular organisms use specialized RNA polymerases called "primases" to synthesize RNA primers for the initiation of DNA replication. The high-resolution crystal structure of a primase, comprising the catalytic core of the Escherichia coli DnaG protein, was determined. The core structure contains an active-site architecture that is unrelated to other DNA or RNA polymerase palm folds, but is instead related to the "toprim" fold. On the basis of the structure, it is likely that DnaG binds nucleic acid in a groove clustered with invariant residues and that DnaG is positioned within the replisome to accept single-stranded DNA directly from the replicative helicase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keck, J L -- Roche, D D -- Lynch, A S -- Berger, J M -- New York, N.Y. -- Science. 2000 Mar 31;287(5462):2482-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, 229 Stanley Hall, no. 3206, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10741967" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; DNA Helicases/chemistry/metabolism ; DNA Primase/*chemistry/*metabolism ; DNA Replication ; DNA, Bacterial/metabolism ; DNA, Single-Stranded/*metabolism ; DNA-Directed RNA Polymerases/*chemistry/metabolism ; Escherichia coli/*enzymology/metabolism ; Metals/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/biosynthesis ; Recombinant Proteins/chemistry/metabolism ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2002-09-28
    Description: Unc104/KIF1A belongs to a class of monomeric kinesin motors that have been thought to possess an unusual motility mechanism. Unlike the unidirectional motion driven by the coordinated actions of the two heads in conventional kinesins, single-headed KIF1A was reported to undergo biased diffusional motion along microtubules. Here, we show that Unc104/KIF1A can dimerize and move unidirectionally and processively with rapid velocities characteristic of transport in living cells. These results suggest that Unc104/KIF1A operates in vivo by a mechanism similar to conventional kinesin and that regulation of motor dimerization may be used to control transport by this class of kinesins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomishige, Michio -- Klopfenstein, Dieter R -- Vale, Ronald D -- AR42895/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Sep 27;297(5590):2263-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Howard Hughes Medical Institute and the Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12351789" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Caenorhabditis elegans ; Caenorhabditis elegans Proteins/chemistry/physiology ; Diffusion ; Dimerization ; Humans ; Kinesin/*chemistry/physiology ; Liposomes ; Microtubules/*physiology ; Molecular Motor Proteins/*chemistry/*physiology ; Molecular Sequence Data ; Movement ; Mutation ; Nerve Tissue Proteins/*chemistry/*physiology ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2000-06-02
    Description: The mechanism by which a signal recognition particle (SRP) and its receptor mediate protein targeting to the endoplasmic reticulum or to the bacterial plasma membrane is evolutionarily conserved. In Escherichia coli, this reaction is mediated by the Ffh/4.5S RNA ribonucleoprotein complex (Ffh/4.5S RNP; the SRP) and the FtsY protein (the SRP receptor). We have quantified the effects of 4.5S RNA on Ffh-FtsY complex formation by monitoring changes in tryptophan fluorescence. Surprisingly, 4.5S RNA facilitates both assembly and disassembly of the Ffh-FtsY complex to a similar extent. These results provide an example of an RNA molecule facilitating protein-protein interactions in a catalytic fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peluso, P -- Herschlag, D -- Nock, S -- Freymann, D M -- Johnson, A E -- Walter, P -- GM 26494/GM/NIGMS NIH HHS/ -- GM 32384/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jun 2;288(5471):1640-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10834842" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/*metabolism ; Catalysis ; Escherichia coli/metabolism ; *Escherichia coli Proteins ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Guanylyl Imidodiphosphate/metabolism ; Kinetics ; Models, Chemical ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Bacterial/chemistry/*metabolism ; Receptors, Cytoplasmic and Nuclear/chemistry/*metabolism ; Ribonucleoproteins/chemistry/metabolism ; Signal Recognition Particle/chemistry/*metabolism ; Spectrometry, Fluorescence ; Thermodynamics ; Tryptophan
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2000-12-16
    Description: The growth of the bacterial flagellar filament occurs at its distal end by self-assembly of flagellin transported from the cytoplasm through the narrow central channel. The cap at the growing end is essential for its growth, remaining stably attached while permitting the flagellin insertion. In order to understand the assembly mechanism, we used electron microscopy to study the structures of the cap-filament complex and isolated cap dimer. Five leg-like anchor domains of the pentameric cap flexibly adjusted their conformations to keep just one flagellin binding site open, indicating a cap rotation mechanism to promote the flagellin self-assembly. This represents one of the most dynamic movements in protein structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yonekura, K -- Maki, S -- Morgan, D G -- DeRosier, D J -- Vonderviszt, F -- Imada, K -- Namba, K -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2148-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Protonic NanoMachine Project, ERATO, JST, 3-4 Hikaridai, Seika, Kyoto 619-0237, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11118149" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/metabolism/*ultrastructure ; Bacterial Proteins/*chemistry/*metabolism ; Cryoelectron Microscopy ; Diffusion ; Dimerization ; Flagella/*metabolism/ultrastructure ; Flagellin/*chemistry/*metabolism ; Image Processing, Computer-Assisted ; Models, Biological ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2002-04-16
    Description: One of the most complex biosynthetic processes in metallobiochemistry is the assembly of nitrogenase, the key enzyme in biological nitrogen fixation. We describe here the crystal structure of an iron-molybdenum cofactor-deficient form of the nitrogenase MoFe protein, into which the cofactor is inserted in the final step of MoFe protein assembly. The MoFe protein folds as a heterotetramer containing two copies each of the homologous alpha and beta subunits. In this structure, one of the three alpha subunit domains exhibits a substantially changed conformation, whereas the rest of the protein remains essentially unchanged. A predominantly positively charged funnel is revealed; this funnel is of sufficient size to accommodate insertion of the negatively charged cofactor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmid, Benedikt -- Ribbe, Markus W -- Einsle, Oliver -- Yoshida, Mika -- Thomas, Leonard M -- Dean, Dennis R -- Rees, Douglas C -- Burgess, Barbara K -- New York, N.Y. -- Science. 2002 Apr 12;296(5566):352-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, Mail Code 147-75CH, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11951047" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Azotobacter vinelandii/*enzymology ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Molybdoferredoxin/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Static Electricity ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2000-11-18
    Description: PSD-95 is a neuronal PDZ protein that associates with receptors and cytoskeletal elements at synapses, but whose function is uncertain. We found that overexpression of PSD-95 in hippocampal neurons can drive maturation of glutamatergic synapses. PSD-95 expression enhanced postsynaptic clustering and activity of glutamate receptors. Postsynaptic expression of PSD-95 also enhanced maturation of the presynaptic terminal. These effects required synaptic clustering of PSD-95 but did not rely on its guanylate kinase domain. PSD-95 expression also increased the number and size of dendritic spines. These results demonstrate that PSD-95 can orchestrate synaptic development and are suggestive of roles for PSD-95 in synapse stabilization and plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉El-Husseini, A E -- Schnell, E -- Chetkovich, D M -- Nicoll, R A -- Bredt, D S -- New York, N.Y. -- Science. 2000 Nov 17;290(5495):1364-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, San Francisco 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11082065" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Dendrites/ultrastructure ; Excitatory Postsynaptic Potentials ; Hippocampus/cytology ; Interneurons/cytology/metabolism/*physiology ; Intracellular Signaling Peptides and Proteins ; Membrane Proteins ; Nerve Tissue Proteins/chemistry/genetics/metabolism/*physiology ; Patch-Clamp Techniques ; Presynaptic Terminals/physiology ; Protein Structure, Tertiary ; Pyramidal Cells/cytology/metabolism/*physiology ; Rats ; Receptor Aggregation ; Receptors, AMPA/metabolism ; Receptors, Glutamate/*metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Synapses/metabolism/*physiology ; Synaptic Transmission ; Synaptic Vesicles/physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...