ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rats
  • American Association for the Advancement of Science (AAAS)  (17)
  • EDP Sciences
  • International Union of Crystallography
  • Springer Nature
  • Wiley-Blackwell
  • 2000-2004
  • 1995-1999  (17)
  • 1980-1984
  • 1940-1944
  • 1996  (17)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (17)
  • EDP Sciences
  • International Union of Crystallography
  • Springer Nature
  • Wiley-Blackwell
Years
  • 2000-2004
  • 1995-1999  (17)
  • 1980-1984
  • 1940-1944
Year
  • 1
    Publication Date: 1996-08-16
    Description: Small synthetic molecules termed growth hormone secretagogues (GHSs) act on the pituitary gland and the hypothalamus to stimulate and amplify pulsatile growth hormone (GH) release. A heterotrimeric GTP-binding protein (G protein)-coupled receptor (GPC-R) of the pituitary and arcuate ventro-medial and infundibular hypothalamus of swine and humans was cloned and was shown to be the target of the GHSs. On the basis of its pharmacological and molecular characterization, this GPC-R defines a neuroendocrine pathway for the control of pulsatile GH release and supports the notion that the GHSs mimic an undiscovered hormone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Howard, A D -- Feighner, S D -- Cully, D F -- Arena, J P -- Liberator, P A -- Rosenblum, C I -- Hamelin, M -- Hreniuk, D L -- Palyha, O C -- Anderson, J -- Paress, P S -- Diaz, C -- Chou, M -- Liu, K K -- McKee, K K -- Pong, S S -- Chaung, L Y -- Elbrecht, A -- Dashkevicz, M -- Heavens, R -- Rigby, M -- Sirinathsinghji, D J -- Dean, D C -- Melillo, D G -- Patchett, A A -- Nargund, R -- Griffin, P R -- DeMartino, J A -- Gupta, S K -- Schaeffer, J M -- Smith, R G -- Van der Ploeg, L H -- New York, N.Y. -- Science. 1996 Aug 16;273(5277):974-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Merck Research Laboratories, Rahway, NJ 07065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8688086" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Codon ; DNA, Complementary/genetics ; GTP-Binding Proteins/metabolism ; Growth Hormone/*secretion ; Hormones/*metabolism ; Humans ; Hypothalamus, Middle/chemistry ; Indoles/*metabolism/pharmacology ; Macaca mulatta ; Molecular Sequence Data ; Oligopeptides/*metabolism ; Pituitary Gland/chemistry ; RNA, Complementary/genetics ; Rats ; Receptors, Cell Surface/analysis/chemistry/genetics/*metabolism ; *Receptors, G-Protein-Coupled ; Receptors, Ghrelin ; Spiro Compounds/*metabolism/pharmacology ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-08-16
    Description: A signaling pathway has been elucidated whereby growth factors activate the transcription factor cyclic adenosine monophosphate response element-binding protein (CREB), a critical regulator of immediate early gene transcription. Growth factor-stimulated CREB phosphorylation at serine-133 is mediated by the RAS-mitogen-activated protein kinase (MAPK) pathway. MAPK activates CREB kinase, which in turn phosphorylates and activates CREB. Purification, sequencing, and biochemical characterization of CREB kinase revealed that it is identical to a member of the pp90(RSK) family, RSK2. RSK2 was shown to mediate growth factor induction of CREB serine-133 phosphorylation both in vitro and in vivo. These findings identify a cellular function for RSK2 and define a mechanism whereby growth factor signals mediated by RAS and MAPK are transmitted to the nucleus to activate gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xing, J -- Ginty, D D -- Greenberg, M E -- CA43855/CA/NCI NIH HHS/ -- NS34814-01/NS/NINDS NIH HHS/ -- P30-HD18655/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1996 Aug 16;273(5277):959-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8688081" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cell Nucleus/metabolism ; Cyclic AMP Response Element-Binding Protein/*metabolism ; Epidermal Growth Factor/pharmacology ; *Gene Expression Regulation ; Growth Substances/*pharmacology ; Humans ; Molecular Sequence Data ; Nerve Growth Factors/pharmacology ; PC12 Cells ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Rats ; Ribosomal Protein S6 Kinases ; *Signal Transduction ; Tetradecanoylphorbol Acetate/pharmacology ; Transcriptional Activation ; Transfection ; Tumor Cells, Cultured ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-03-15
    Description: Activation of the mesolimbic dopamine system is known to trigger relapse in animal models of cocaine-seeking behavior. We found that this "priming" effect was selectively induced by D2-like, and not by D1-like, dopamine receptor agonists in rats. Moreover, D1-like receptor agonists prevented cocaine-seeking behavior induced by cocaine itself, whereas D2-like receptor agonists enhanced this behavior. These results demonstrate an important dissociation between D1- and D2-like receptor processes in cocaine-seeking behavior and support further evaluation of D1-like receptor agonists as a possible pharmacotherapy for cocaine addiction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Self, D W -- Barnhart, W J -- Lehman, D A -- Nestler, E J -- New York, N.Y. -- Science. 1996 Mar 15;271(5255):1586-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, 06508, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8599115" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Addictive/*etiology ; Behavior, Animal/drug effects ; Benzazepines/pharmacology ; Caffeine/pharmacology ; *Cocaine/administration & dosage ; Dopamine Agonists/*pharmacology ; Ergolines/pharmacology ; Male ; Motor Activity/drug effects ; Quinpirole ; Rats ; Rats, Sprague-Dawley ; Receptors, Dopamine D1/agonists/*physiology ; Receptors, Dopamine D2/agonists/*physiology ; Recurrence ; Reinforcement (Psychology) ; Substance-Related Disorders/*etiology ; Tetrahydronaphthalenes/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-04-12
    Description: A retroviral vector system based on the human immunodeficiency virus (HIV) was developed that, in contrast to a murine leukemia virus-based counterpart, transduced heterologous sequences into HeLa cells and rat fibroblasts blocked in the cell cycle, as well as into human primary macrophages. Additionally, the HIV vector could mediate stable in vivo gene transfer into terminally differentiated neurons. The ability of HIV-based viral vectors to deliver genes in vivo into nondividing cells could increase the applicability of retroviral vectors in human gene therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naldini, L -- Blomer, U -- Gallay, P -- Ory, D -- Mulligan, R -- Gage, F H -- Verma, I M -- Trono, D -- AG08514/AG/NIA NIH HHS/ -- AG10435/AG/NIA NIH HHS/ -- AI37510/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1996 Apr 12;272(5259):263-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Salk Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8602510" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Brain/cytology/virology ; Cell Division ; Cells, Cultured ; Female ; *Gene Transfer Techniques ; Genetic Therapy ; *Genetic Vectors ; HIV/*genetics/physiology ; HeLa Cells ; Humans ; Macrophages/cytology/virology ; Molecular Sequence Data ; Neurons/cytology/virology ; Plasmids ; Rats ; Transfection ; Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-12-13
    Description: Indirect mechanisms are implicated in the pathogenesis of the dementia associated with human immunodeficiency virus-type 1 (HIV-1) infection. Proinflammatory molecules such as tumor necrosis factor alpha and eicosanoids are elevated in the central nervous system of patients with HIV-1-related dementia. Nitric oxide (NO) is a potential mediator of neuronal injury, because cytokines may activate the immunologic (type II) isoform of NO synthase (iNOS). The levels of iNOS in severe HIV-1-associated dementia coincided with increased expression of the HIV-1 coat protein gp41. Furthermore, gp41 induced iNOS in primary cultures of mixed rat neuronal and glial cells and killed neurons through a NO-dependent mechanism. Thus, gp41-induced NO formation may contribute to the severe cognitive dysfunction associated with HIV-1 infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adamson, D C -- Wildemann, B -- Sasaki, M -- Glass, J D -- McArthur, J C -- Christov, V I -- Dawson, T M -- Dawson, V L -- AI35042/AI/NIAID NIH HHS/ -- NS07392/NS/NINDS NIH HHS/ -- NS22643/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 Dec 13;274(5294):1917-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Pathology 2-210, Baltimore, MD 21287, USA. valina.dawson@qmail.bs.jhu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8943206" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Dementia Complex/*enzymology/metabolism ; Animals ; Brain/*enzymology/metabolism ; Cell Death ; Cells, Cultured ; Cerebral Cortex/enzymology/metabolism ; Enzyme Induction ; HIV Envelope Protein gp120/metabolism/pharmacology ; HIV Envelope Protein gp41/*metabolism/pharmacology ; *Hiv-1 ; Humans ; Neuroglia/cytology ; Neurons/cytology ; Nitric Oxide/metabolism ; Nitric Oxide Synthase/*biosynthesis/genetics ; Polymerase Chain Reaction ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-11-22
    Description: The RAC guanine nucleotide binding proteins regulate multiple biological activities, including actin polymerization, activation of the Jun kinase (JNK) cascade, and cell proliferation. RAC effector loop mutants were identified that separate the ability of RAC to interact with different downstream effectors. One mutant of activated human RAC protein, RACV12H40 (with valine and histidine substituted at position 12 and 40, respectively), was defective in binding to PAK3, a Ste20-related p21-activated kinase (PAK), but bound to POR1, a RAC-binding protein. This mutant failed to stimulate PAK and JNK activity but still induced membrane ruffling and mediated transformation. A second mutant, RACV12L37 (with leucine substituted at position 37), which bound PAK but not POR1, induced JNK activation but was defective in inducing membrane ruffling and transformation. These results indicate that the effects of RAC on the JNK cascade and on actin polymerization and cell proliferation are mediated by distinct effector pathways that diverge at the level of RAC itself.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joneson, T -- McDonough, M -- Bar-Sagi, D -- Van Aelst, L -- CA55360/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 22;274(5291):1374-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, NY 11794, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8910277" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Actins/*metabolism ; *Adaptor Proteins, Signal Transducing ; Animals ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Carrier Proteins/metabolism ; *Cell Division ; Cell Line ; Cell Line, Transformed ; Cell Membrane/ultrastructure ; Enzyme Activation ; GTP-Binding Proteins/genetics/metabolism/*physiology ; Humans ; JNK Mitogen-Activated Protein Kinases ; Mice ; *Mitogen-Activated Protein Kinases ; Mutagenesis ; Protein-Serine-Threonine Kinases/metabolism ; Rats ; Transfection ; p21-Activated Kinases ; rac GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-02-09
    Description: The RAS guanine nucleotide binding proteins activate multiple signaling events that regulate cell growth and differentiation. In quiescent fibroblasts, ectopic expression of activated H-RAS (H-RASV12, where V12 indicates valine-12) induces membrane ruffling, mitogen-activated protein (MAP) kinase activation, and stimulation of DNA synthesis. A mutant of activated H-RAS, H-RASV12C40 (where C40 indicates cysteine-40), was identified that was defective for MAP kinase activation and stimulation of DNA synthesis, but retained the ability to induce membrane ruffling. Another mutant of activated H-RAS, H-RASV12S35 (where S35 indicates serine-35), which activates MAP kinase, was defective for stimulation of membrane ruffling and induction of DNA synthesis. Expression of both mutants resulted in a stimulation of DNA synthesis that was comparable to that induced by H-RASV12. These results indicate that membrane ruffling and activation of MAP kinase represent distinct RAS effector pathways and that input from both pathways is required for the mitogenic activity of RAS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joneson, T -- White, M A -- Wigler, M H -- Bar-Sagi, D -- CA 55360/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 Feb 9;271(5250):810-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook 11794, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8628998" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Division ; Cell Line ; Cell Membrane/*ultrastructure ; DNA/biosynthesis ; Enzyme Activation ; GTP-Binding Proteins/genetics/metabolism ; Microinjections ; Mutation ; Plasmids ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-raf ; Rats ; Signal Transduction ; rac GTP-Binding Proteins ; ras Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-04-26
    Description: Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) selectively bind to distinct members of the Trk family of tyrosine kinase receptors, but all three bind with similar affinities to the neurotrophin receptor p75 (p75NTR). The biological significance of neurotrophin binding to p75NTR in cells that also express Trk receptors has been difficult to ascertain. In the absence of TrkA, NGF binding to p75NGR activated the transcription factor nuclear factor kappa B (NF-kappa B) in rat Schwann cells. This activation was not observed in Schwann cells isolated from mice that lacked p75NTR. The effect was selective for NGF; NF-kappa B was not activated by BDNF or NT-3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, B D -- Kaltschmidt, C -- Kaltschmidt, B -- Offenhauser, N -- Bohm-Matthaei, R -- Baeuerle, P A -- Barde, Y A -- New York, N.Y. -- Science. 1996 Apr 26;272(5261):542-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiochemistry, Max-Planck Institute for Psychiatry, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8614802" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Brain-Derived Neurotrophic Factor ; Cell Nucleus/metabolism ; Cells, Cultured ; DNA/metabolism ; L Cells (Cell Line) ; Mice ; Molecular Sequence Data ; NF-kappa B/*metabolism ; Nerve Growth Factors/*metabolism/pharmacology ; Nerve Tissue Proteins/metabolism/pharmacology ; Neurotrophin 3 ; Proto-Oncogene Proteins/metabolism ; Rats ; Receptor Protein-Tyrosine Kinases/metabolism ; Receptor, Nerve Growth Factor ; Receptor, trkA ; Receptors, Nerve Growth Factor/*metabolism ; Schwann Cells/*metabolism ; Signal Transduction/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Porte, D Jr -- Schwartz, M W -- New York, N.Y. -- Science. 1996 May 3;272(5262):699-700.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8614830" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Diabetes Complications ; Diabetes Mellitus/enzymology ; Diabetes Mellitus, Experimental/complications/enzymology ; Endothelium, Vascular/enzymology ; Enzyme Inhibitors/*pharmacology/toxicity ; Humans ; Hyperglycemia/*complications/enzymology ; Isoenzymes/*antagonists & inhibitors/metabolism ; Kidney/enzymology ; Muscle, Smooth, Vascular/enzymology ; Protein Kinase C/*antagonists & inhibitors/metabolism ; Protein Kinase C beta ; Rats ; Regional Blood Flow/drug effects ; Retina/enzymology ; Retinal Vessels/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1996-10-25
    Description: Metabotropic glutamate receptors (mGluRs) regulate transmitter release at mammalian central synapses. However, because of the difficulty of recording from mammalian presynaptic terminals, the mechanism underlying mGluR-mediated presynaptic inhibition is not known. Here, simultaneous recordings from a giant presynaptic terminal, the calyx of Held, and its postsynaptic target in the medial nucleus of the trapezoid body were obtained in rat brainstem slices. Agonists of mGluRs suppressed a high voltage-activated P/Q-type calcium conductance in the presynaptic terminal, thereby inhibiting transmitter release at this glutamatergic synapse. Because several forms of presynaptic modulation and plasticity are mediated by mGluRs, this identification of a target ion channel is a first step toward elucidation of their molecular mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takahashi, T -- Forsythe, I D -- Tsujimoto, T -- Barnes-Davies, M -- Onodera, K -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1996 Oct 25;274(5287):594-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurophysiology, Institute for Brain Research, Faculty of Medicine, University of Tokyo, Tokyo 113, Japan. ttakahas-tky@umin.u-tokyo.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8849448" target="_blank"〉PubMed〈/a〉
    Keywords: Aminobutyrates/pharmacology ; Animals ; Brain Stem ; Cadmium/pharmacology ; Calcium/*metabolism ; Calcium Channel Blockers/pharmacology ; Calcium Channels/drug effects/*metabolism ; Excitatory Amino Acid Agonists/pharmacology ; In Vitro Techniques ; Neurotransmitter Agents/metabolism ; Patch-Clamp Techniques ; Potassium/metabolism ; Potassium Channels/drug effects/metabolism ; Presynaptic Terminals/*metabolism ; Rats ; Rats, Wistar ; Receptors, Metabotropic Glutamate/agonists/*metabolism ; Synapses/*metabolism ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...