ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (81)
  • Artikel und Konferenzbeiträge (GFZpublic)  (81)
  • Englisch  (81)
  • 2020-2023  (81)
  • 2020-2020
  • 2022  (79)
  • 2020  (2)
  • 2020  (2)
  • 1998
Sammlung
  • Artikel  (81)
Datenquelle
  • Artikel und Konferenzbeiträge (GFZpublic)  (81)
Sprache
Erscheinungszeitraum
Jahr
  • 2022  (79)
  • 2020  (2)
  • 2020  (2)
  • 1998
  • 2021  (26)
  • 1
    facet.materialart.
    Unbekannt
    In:  Proceedings of the National Academy of Sciences of the United States of America (PNAS)
    Publikationsdatum: 2022-02-16
    Beschreibung: One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-09
    Beschreibung: In the global methane budget, the largest natural source is attributed to wetlands, which encompass all ecosystems composed of waterlogged or inundated ground, capable of methane production. Among them, northern peatlands that store large amounts of soil organic carbon have been functioning, since the end of the last glaciation period, as long-term sources of methane (CH4) and are one of the most significant methane sources among wetlands. To reduce uncertainty of quantifying methane flux in the global methane budget, it is of significance to understand the underlying processes for methane production and fluxes in northern peatlands. A methane model that features methane production and transport by plants, ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model that includes an explicit representation of northern peatlands. ORCHIDEE-PCH4 was calibrated and evaluated on 14 peatland sites distributed on both the Eurasian and American continents in the northern boreal and temperate regions. Data assimilation approaches were employed to optimized parameters at each site and at all sites simultaneously. Results show that methanogenesis is sensitive to temperature and substrate availability over the top 75 cm of soil depth. Methane emissions estimated using single site optimization (SSO) of model parameters are underestimated by 9 g CH4 m−2 yr−1 on average (i.e., 50 % higher than the site average of yearly methane emissions). While using the multi-site optimization (MSO), methane emissions are overestimated by 5 g CH4 m−2 yr−1 on average across all investigated sites (i.e., 37 % lower than the site average of yearly methane emissions).
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-01-21
    Beschreibung: For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from 〉25 000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth 〉20 years old and degraded/logged forests) than in young secondary forests (⩽20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0–7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-11-14
    Beschreibung: The Joint Task Force, Science Monitoring And Reliable Telecommunications (SMART) Subsea Cables is working to integrate environmental sensors (temperature, pressure, seismic acceleration) into submarine telecommunications cables. This will support climate and ocean observation, sea-level monitoring, observations of Earth structure, tsunami and earthquake early warning, and disaster risk reduction. Recent advances include regional SMART pilot systems that are the initial steps to trans-ocean and global implementation. Building on the OceanObs’19 conference and community white paper (https://doi.org/10.3389/ fmars.2019.00424), this paper presents an overview of the initiative and a description of ongoing projects including: InSea wet demonstration project off Sicily; Vanuatu and New Caledonia; Indonesia; CAM-2 ring system connecting the Portuguese mainland, Azores, and Madeira; New Zealand; and Antarctica. In addition to the diverse scientific and societal benefits, the telecommunications industry’s mission of societal connectivity will also benefit because environmental awareness improves both individual cable system integrity and the resilience of the overall global communications network. Keywords: telecommunication cables, SMART sensors, seafloor sensing, earthquake early warning, tsunami detection
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-02-09
    Beschreibung: With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore cross-cutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-06-09
    Beschreibung: Iron-bearing carbonates play an important role in Earth’s carbon cycle. Owing to their stability at mantle conditions, recently discovered iron carbonates with tetrahedrally coordinated carbon atoms are candidates for carbon storage in the deep Earth. The carbonates’ iron oxidation and spin state at extreme pressure and temperature conditions contribute to the redox conditions and element partitioning in the deep mantle. By laser heating FeCO3 at pressures of about 83 GPa, Fe3+4C3O12 and Fe2+2Fe3+2C4O13 were synthesized and then investigated by x-ray emission spectroscopy to elucidate their spin state, both in situ and temperature quenched. Our experimental results show both phases in a high-spin state at all pressures and over the entire temperature range investigated, i.e., up to 3000 K. The spin state is conserved after temperature quenching. A formation path is favored where Fe3+4C3O12 forms first and then reacts to Fe 2+2Fe3+2C4O13, most likely accompanied by the formation of oxides. Density functional theory calculations of Fe2+2Fe3+2C4O13 at 80 GPa confirm the experimental findings with both ferric and ferrous iron in high-spin state with antiferromagnetic order at 80 GPa. As the intercrystalline cation partitioning between the Fe-bearing carbonates and the surrounding perovskite and ferropericlase depends on the spin state of the iron, an understanding of the redox conditions prevalent in subducted slab regions in the lower mantle has to take the latter into account. Especially, Fe2+2Fe3+2C4O13 may play a key role in subducted material in the lower mantle, potentially with a similar role as silicate perovskite.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-06-09
    Beschreibung: Transnational access (TNA) allows cross‑border, short‑term and frequently free‑of‑charge access to world-class research facilities, to foster collaborations and exchanges of experience. Specifically, TNA aims to encourage open science and innovation and to increase the efficient and effective use of scientific infrastructure. Within EPOS, the European Plate Observing System, the Volcano Observatories and Multi‑scale Laboratories communities have offered TNA to their high‑quality research facilities through national and European funding. This experience has allowed the definition, design, and testing of procedures and activities needed to provide transnational access in the EPOS context. In this paper, the EPOS community describes the main objectives for the provision of transnational access in the EPOS framework, based on previous experiences. It includes practical procedures for managing transnational access from a legal, governance, and financial perspective, and proposes logistical and technical solutions to effectively execute transnational access activities. In addition, it provides an outlook on the inclusion of new thematic communities within the TNA framework, and addresses the challenges of providing market‑driven access to industry.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-06-09
    Beschreibung: Arctic permafrost landscapes have functioned as a global carbon sink for millennia. These landscapes are very heterogeneous, and the omnipresent water bodies within them act as a carbon source. Yet, few studies have focused on the impact of these water bodies on the landscape carbon budget. We deepen our understanding of carbon emissions from thermokarst ponds and constrain their impact by comparing carbon dioxide and methane fluxes from these ponds to fluxes from the surrounding tundra. We use eddy covariance measurements from a tower located at the border between a large pond and semi-terrestrial tundra. When we take the open-water areas of thermokarst ponds into account, our results show that the estimated summer carbon uptake of the polygonal tundra is 11 % lower. Further, the data show that open-water methane emissions are of a similar magnitude to polygonal tundra emissions. However, some parts of the pond's shoreline exhibit much higher emissions. This finding underlines the high spatial variability in methane emissions. We conclude that gas fluxes from thermokarst ponds can contribute significantly to the carbon budget of Arctic tundra landscapes. Consequently, changes in the water body distribution of tundra landscapes due to permafrost degradation may substantially impact the overall carbon budget of the Arctic.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-05-18
    Beschreibung: Cassiterite, the economically most important tin mineral, typically has moderate U and variable common Pb contents, making it amenable for U-Pb dating. Cassiterite has extremely low Th/U ratios (Th/U 〈 0.01) and its 208Pb is dominantly common Pb. This is particularly helpful as there is significant interference of tungsten oxides on 202Hg and 204Pb. The feasibility of the 208Pb correction procedure is discussed in detail. The 208Pb corrected LA-SF-ICP-MS data are in good agreement with intercept ages in the Tera-Wasserburg diagram and 207Pb corrected ages. Twelve cassiterite samples were investigated using the ID-TIMS and LA-SF-ICP-MS methods. The ID-TIMS results of Pit-AB, Rond-A, RG-114, BB#7 and 19GX cassiterite are reported for the first time in this study. RG-114, BB#7 and 19GX cassiterite have very low common Pb contents and are recommended for use as primary reference materials for in situ cassiterite. Pit-AB, Rond-A and Yankee cassiterite contain a small amount of common Pb, produce reliable and consistent ages and are suitable as primary reference materials. The remaining five cassiterite samples (Kard, Zinnwald, Els, XBD-W and Y724) were only investigated using the LA-SF-ICP-MS method and produce ages consistent with published age data from the host rocks associated with the tin deposits and with published U-Pb ages of cassiterite from the same deposits. We present an ID-TIMS Usingle bondPb of 154.3 ± 0.7 Ma for the commonly used cassiterite reference material AY-4. This age differs from previously reported ID-TIMS ages. This age discrepancy is caused by different initial common Pb compositions rather than age heterogeneity.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-01-27
    Beschreibung: We present a new procedure for U–Pb dating of vesuvianite using laser ablation sector field inductively coupled plasma mass spectrometry (LA-SF-ICP-MS). Vesuvianite is a common mineral in skarn ore deposits and in metamorphic and metasomatic argillaceous carbonate rocks. The age of vesuvianite growth directly dates the formation of skarn mineralization, possibly also the metamorphism and metasomatism of argillaceous limestones. Vesuvianite U–Pb dating may provide age information for hydrothermal, metamorphic, and metasomatic processes that may be hard to get by zircon U–Pb dating. We analyzed eleven vesuvianite samples. Matrix effects were corrected by using Ti-bearing andradite (schorlomite) of known age as no well-characterized vesuvianite was available as a U–Pb reference material. The robustness of the analytical protocol was assessed by additional U–Pb dating of four vesuvianite samples by ID-TIMS. The U–Pb ages determined by ID-TIMS and LA-SF-ICP-MS agree well within uncertainties. An additional seven vesuvianite samples yielded in situ U–Pb ages that agree with previously published zircon, cassiterite, or wolframite U–Pb ages from the same area. Therefore, U–Pb dating of vesuvianite by LA-SF-ICP-MS represents a fast, relatively low-cost approach with high spatial resolution that may be particularly suited to date skarn mineralization.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...