ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (6)
  • Articles (OceanRep)  (6)
  • Elsevier  (6)
  • 2015-2019  (6)
Collection
  • Other Sources  (6)
Source
  • Articles (OceanRep)  (6)
Years
Year
  • 1
    Publication Date: 2020-01-02
    Description: We evaluated the relationship between interferon-induced transmembrane protein 1 (IFITM1) expression, epithelial–mesenchymal transition (EMT) signature and angiogenesis in lung adenocarcinoma. Additionally, we examined prognostic significance of IFITM1 according to pTNM stage to confirm that IFITM1 can serve as a complement to the pTNM stage. A total of 141 lung adenocarcinoma specimens were evaluated retrospectively by immunohistochemical staining for IFITM1, EMT markers (e-cadherin, β-catenin, and vimentin), and CD31 to measure microvessel density. IFITM1was expressed in 46.8% of the specimens. IFITM1 expression was significantly correlated with increased microvessel density (P = 0.048). However, IFITM1 expression was not associated with three EMT markers. In a multivariate analysis, IFITM1 was an independent prognostic factor for overall survival in a multivariate analysis (hazard ratio: 2.59, P = 0.01). Online database with data from 720 lung adenocarcinoma patients also revealed a negative prognostic significance of IFITM1 (P 〈 0.001). Furthermore, high IFITM1 expression was significantly correlated with decreased OS rates in each pTNM stage. IFITM1 is significantly correlated with angiogenesis and it may be used as a useful additional prognostic marker to aid pTNM classification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-08
    Description: Correlation of the Paleoproterozoic rocks of the Korean Peninsula and China has been considered to be important for the tectonic evolution of Northeast Asia, yet it is still unclear. Recently considerable new data have been obtained from the Korean Peninsula and China providing a better opportunity to correlate the Paleoproterozoic rocks of the Korean Peninsula and China. Intermediate–P/T metamorphism and post–collisional magmatism have been found to have occurred during ca. 1.95–1.83 Ga not only in the Jiao–Liao–Ji belt on the eastern North China Craton but also in the Nangrim and northern Gyeonggi Massifs within the Korean Peninsula representing that these Paleoproterozoic rocks can be correlated. These events occurred as a result of the collision between the Longgang Block of the eastern North China Craton and the Nangrim Massifs of the Korean Peninsula. On the other hand, the southeastern Gyeonggi Massif underwent an arc–related magmatic and metamorphic events during ca. 1.96–1.91 Ga suggesting that the Paleoproterozoic rocks in southeastern Gyeonggi Massif cannot be correlated with those in northern Gyeonggi Massif. The Yeongnam Massif is unlikely correlated to the Nangrim and northern Gyeonggi Massifs and the eastern North China Craton because arc–related igneous activity occurred during ca. 2.00–1.85 Ga in the Sobaeksan Gneiss Complex in the central to northeastern Yeongnam Massif. The Jirisan Gneiss Complex in the southwestern Yeongnam Massif underwent intermediate–P/T metamorphism that is followed by post–collisional magmatic and low–P/T metamorphic events during ca. 1.92–1.86 Ga and these events may be correlated to those in the eastern Cathaysia Block on the South China Craton. The Paleoproterozoic correlation between the Korean Peninsula and China in this study supports a tectonic model in which the Permo–Triassic Dabie–Sulu continental collision belt in China extends into the Hongseong–Odaesan collision belt in the Gyeonggi Massif within the Korean Peninsula.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: The cause of rapid hydrological changes in the tropical West Pacific during the last deglaciation remains controversial. In order to test whether these changes were triggered by abrupt climate change events in the North Atlantic Ocean, variations in precipitation during the last deglaciation (18–10 ka) were extracted from proxy records of chemical weathering and terrigenous input in the western Philippine Sea (WPS). The evolution of chemical weathering and terrigenous input since 27 ka was reconstructed using the chemical index of alteration (CIA), elemental ratios (K/Al, TOC/TN and Ti/Ca), δ13Corg, terrigenous fraction abundance and flux data from International Marine Global Change Study Program (IMAGES) core MD06-3054 collected on the upper continental slope of eastern Luzon (northern Philippines). Sediment deposited during the Last Glacial Maximum (LGM) shows weathering equal to or slightly greater than Holocene sediment in the WPS. This unusual state of chemical weathering, which is inconsistent with lower air temperatures and decreased precipitation in Luzon during the LGM, may be due to reworking of poorly consolidated sediments on the eastern Luzon continental shelf during the LGM sea-level lowstand. Rapid changes in chemical weathering, characterized by higher intensity during the Heinrich event 1 (H1) and Younger Dryas (YD) and lower intensity during the Bølling-Allerød (B/A), were linked to rapid variations in precipitation in the WPS during the last deglaciation. The higher terrigenous inputs during the LGM relative to those of the Holocene were controlled by sea-level changes rather than precipitation. The terrigenous inputs show a long-term decline during the last deglaciation, punctuated by brief spikes during the H1 and YD related to sea-level rises and rapid precipitation changes in the WPS, respectively. The proxy records of chemical weathering and terrigenous input from eastern Luzon suggest high rainfall during the H1 and YD events, consistent with inferred rainfall patterns based on Fe/Ca records from offshore Mindanao. Rapid precipitation changes in the WPS did not coincide with migrations of the Intertropical Convergence Zone (ITCZ) but, rather, were related to state shifts of the El Niño-Southern Oscillation (ENSO) during the last deglaciation. Based on proxy records and modeling results, we argue that the Atlantic meridional overturning circulation (AMOC) controlled rapid precipitation changes in the tropical West Pacific through zonal shifts of ENSO or meridional migration of the ITCZ during the last deglaciation. Our findings highlight the dominant role of the North Atlantic Ocean in the tropical hydrologic cycle during the last deglaciation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: The Pb isotope compositions of galena in hydrothermal deposits obtained by drillings from two hydrothermal fields in the middle Okinawa Trough were studied. One of the study fields was the Iheya North field located on a volcanic complex and the other was the Izena field located in the sediment-filled caldera structure. LA-MC-ICP-MS was applied to directly measure Pb isotope compositions in individual galena grains which highlighted variations not only in regional scale, but also in microscopic scale so that changes of Pb isotope compositions within a galena grain can be tracked. Homogeneous Pb isotope compositions were found within the same hydrothermal site, irrespective of the mineral assemblage, texture and sampling depth beneath the seafloor. In contrast, the isotope compositions varied significantly between the two hydrothermal fields. The Pb isotope composition from the Iheya North field was isotopically close to the volcanic rocks of the Okinawa Trough, whereas that from the Izena field was more radiogenic with values intermediate between sediments and volcanic rocks of the Okinawa Trough. Within the Iheya North field, intra-field variation of Pb isotope compositions was recognized between two active sites 2.5 km apart from each other. The intra-field variation was recognized also in the Izena field. The sub-seafloor massive sulfide layer has a more sediment-like Pb isotope composition, compared to the inactive sulfide mound. These results illustrate that the Pb-mineralizing hydrothermal fluids originate from their local host rocks with/without sediment and that the isotope compositions of the galena grains reflect their metal sources; either the volcanic rocks and/or the sediments via water-rock interactions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: The Muju area, located on the north–central margin of the Yeongnam Massif, mainly consists of Precambrian orthogneisses (granitic, leucogranitic, augen and dioritic gneisses) with minor migmatite. Zircon U–Pb dating indicates that the protoliths of the orthogneisses intruded at ca. 2.00–1.97 Ga and were metamorphosed at ca. 1.87–1.86 Ga. Magmatic zircon grains within the orthogneisses have positive to negative εHf(t) values (−7.63 to +3.3) and a Neoarchean two-stage model age (TDM2 = 2.78 Ga), indicating that the protoliths of most of the orthogneisses may have been derived from Archean crustal material. The results of geochemical analysis indicate that the protoliths of the orthogneisses formed by partial melting of metagraywacke and mafic igneous rocks in an arc-related tectonic setting. The intrusion ages and geochemical data of the Paleoproterozoic orthogneisses in the study area match well with those of Paleoproterozoic (ca. 2.00–1.97 Ga) orthogneisses in the northeastern Yeongnam Massif, indicating the presence of regional Paleoproterozoic subduction zones along the northern margin of the Yeongnam Massif at ca. 2.00–1.97 Ga. Meanwhile, ca. 2.00–1.97 Ga subduction-related magmatism has not been reported from the northern Gyeonggi and Nangrim Massifs in the Korean Peninsula or the Jiao–Liao–Ji belt in the eastern North China Craton, indicating that the Yeongnam Massif may not be correlatable with the northern Gyeonggi and Nangrim Massifs or the Jiao–Liao–Ji belt. The Yeongnam Massif may be correlated with the Cathaysia Block in the South China Craton and may have been located near Laurentia and the Siberian Craton within the Columbia supercontinent.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-16
    Description: The anthropogenic trace gases chlorofluorocarbon (CFC)-12 and sulfur hexafluoride (SF6) were measured during 2013 in the eastern tropical South Pacific Ocean (ETSP) offshore Chile and Peru (12°-22°S, 70°-86°W). Since the WOCE P21 line along ~17°S in 1993, the CFC-12 penetration depth increased from ~550 m to ~800 m. In 2013, CFC-12 had penetrated through the bottom of the oxygen deficient zone (ODZ, where oxygen (O2) 〈 4.5 μmol kg−1) at all stations, indicating that a portion of waters in this ODZ are ventilated on timescales 〈 60 years. Isopycnal trends in pSF6 and pCFC-12 ages versus AOU indicated oxygen utilization rates of 11.2 ± 4.7 μmol kg−1 yr−1 just above the ODZ (90–130 m) and 1.0 ± 0.5 μmol kg−1 yr−1 beneath the ODZ (400–700 m). Isopycnal trends in pSF6 ages and nutrients implied fixed N-loss rates of 0.6 ± 0.4 μmol kg−1 yr−1 at the top of the ODZ (~120 m). The pSF6 and pCFC-12 ages were significantly younger than mean ages estimated from one-dimensional transit time distributions, which were difficult to constrain using the SF6 and CFC-12 tracer combination. Despite the fact that tracer concentrations tend to underestimate mean ages, and thus overestimate nutrient regeneration/consumption rates, N-loss rates were undetectable (〈0.5 μmol kg−1 yr−1) within the ODZ itself (~175–400 m). When integrated over depth, the oxygen and nitrogen consumption rates determined above and below the ODZ implied total organic carbon (C) remineralization rates on the order of 0.6 ± 0.1 mol C m−2 yr−1. These low C-export rates, and the decadal ventilation timescale of this ODZ, support a body of work suggesting that the ODZ may be sustained by inputs of high-tracer, low-oxygen waters from the adjacent Peru-Chile coastal upwelling system rather than by organic matter oxidation occurring locally.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...