ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
Years
  • 1
    Publication Date: 2024-05-14
    Description: The thermokarst lakes of permafrost regions play a major role in the global carbon cycle. These lakes are sources of methane to the atmosphere although the methane flux is restricted by an ice cover for most of the year. How methane concentrations and fluxes in these waters are affected by the presence of an ice cover is poorly understood. To relate water body morphology, ice formation and methane to each other, we studied the ice of three different water bodies in locations typical of the transition of permafrost from land to ocean in a continuous permafrost coastal region in Siberia. In total, 11 ice cores were analyzed as records of the freezing process and methane composition during the winter season. The three water bodies differed in terms of connectivity to the sea, which affected fall freezing. The first was a bay underlain by submarine permafrost (Tiksi Bay, BY), the second a shallow thermokarst lagoon cut off from the sea in winter (Polar Fox Lagoon, LG) and the third a land-locked freshwater thermokarst lake (Goltsovoye Lake, LK). Ice on all water bodies was mostly methane-supersaturated with respect to atmospheric equilibrium concentration, except for three cores from the isolated lake. In the isolated thermokarst lake, ebullition from actively thawing basin slopes resulted in the localized integration of methane into winter ice. Stable δ13C-CH4 isotope signatures indicated that methane in the lagoon ice was oxidized to concentrations close to or below the calculated atmospheric equilibrium concentration. Increasing salinity during winter freezing led to a micro-environment on the lower ice surface where methane oxidation occurred and the lagoon ice functioned as a methane sink. In contrast, the ice of the coastal marine environment was slightly supersaturated with methane, consistent with the brackish water below. Our interdisciplinary process study shows how water body morphology affects ice formation which mitigates methane fluxes to the atmosphere.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-14
    Description: Here we provide particle size and biovolume distribution data from an Underwater Vision Profiler 6, mounted on a BGC Argo Float with the WMO number 6903095. The float was deployed in a cyclonic eddy off Cape Columbine, South Africa on the 13 April 2021 close to the eddy center at 33.07 degree South, 13.89 degree East. Parking depth was set at 300 m and profiling depth initially to 600 m and later increased to 1000 m depth to maintain the float in the eddy. Profiling frequency was every three days. It stayed within this eddy for about five months and then operated East and Southeast of South Africa until it was deliberately picked up on the 17 September 2022 at 34.43 degrees South and 10.21 degrees East.
    Keywords: 0000a_WMO6903095; 0000p_WMO6903095; 0001a_WMO6903095; 0001p_WMO6903095; 0002a_WMO6903095; 0002p_WMO6903095; 0003a_WMO6903095; 0003p_WMO6903095; 0004a_WMO6903095; 0004p_WMO6903095; 0005a_WMO6903095; 0005p_WMO6903095; 0006a_WMO6903095; 0006p_WMO6903095; 0007a_WMO6903095; 0007p_WMO6903095; 0008a_WMO6903095; 0008p_WMO6903095; 0009a_WMO6903095; 0009p_WMO6903095; 0010a_WMO6903095; 0010p_WMO6903095; 0011a_WMO6903095; 0011p_WMO6903095; 0012a_WMO6903095; 0012p_WMO6903095; 0013a_WMO6903095; 0013p_WMO6903095; 0014a_WMO6903095; 0014p_WMO6903095; 0015a_WMO6903095; 0015p_WMO6903095; 0016a_WMO6903095; 0016p_WMO6903095; 0017a_WMO6903095; 0017p_WMO6903095; 0018a_WMO6903095; 0018p_WMO6903095; 0019a_WMO6903095; 0019p_WMO6903095; 0020a_WMO6903095; 0020p_WMO6903095; 0021a_WMO6903095; 0021p_WMO6903095; 0022a_WMO6903095; 0022p_WMO6903095; 0023a_WMO6903095; 0023p_WMO6903095; 0024a_WMO6903095; 0024p_WMO6903095; 0025a_WMO6903095; 0025p_WMO6903095; 0026a_WMO6903095; 0026p_WMO6903095; 0027a_WMO6903095; 0027p_WMO6903095; 0028a_WMO6903095; 0028p_WMO6903095; 0029a_WMO6903095; 0029p_WMO6903095; 0030a_WMO6903095; 0030p_WMO6903095; 0031a_WMO6903095; 0031p_WMO6903095; 0032a_WMO6903095; 0032p_WMO6903095; 0033a_WMO6903095; 0033p_WMO6903095; 0034a_WMO6903095; 0034p_WMO6903095; 0035a_WMO6903095; 0035p_WMO6903095; 0036a_WMO6903095; 0036p_WMO6903095; 0037a_WMO6903095; 0037p_WMO6903095; 0038a_WMO6903095; 0038p_WMO6903095; 0039a_WMO6903095; 0039p_WMO6903095; 0040a_WMO6903095; 0040p_WMO6903095; 0041a_WMO6903095; 0041p_WMO6903095; 0042a_WMO6903095; 0042p_WMO6903095; 0043a_WMO6903095; 0043p_WMO6903095; 0044a_WMO6903095; 0044p_WMO6903095; 0045a_WMO6903095; 0045p_WMO6903095; 0046a_WMO6903095; 0046p_WMO6903095; 0047a_WMO6903095; 0047p_WMO6903095; 0048a_WMO6903095; 0048p_WMO6903095; 0049a_WMO6903095; 0049p_WMO6903095; 0050a_WMO6903095; 0050p_WMO6903095; 0051a_WMO6903095; 0051p_WMO6903095; 0052a_WMO6903095; 0052p_WMO6903095; 0053a_WMO6903095; 0053p_WMO6903095; 0054a_WMO6903095; 0054p_WMO6903095; 0055a_WMO6903095; 0055p_WMO6903095; 0056a_WMO6903095; 0056p_WMO6903095; 0057a_WMO6903095; 0057p_WMO6903095; 0058a_WMO6903095; 0058p_WMO6903095; 0059a_WMO6903095; 0059p_WMO6903095; 0060a_WMO6903095; 0060p_WMO6903095; 0061a_WMO6903095; 0061p_WMO6903095; 0062a_WMO6903095; 0062p_WMO6903095; 0063a_WMO6903095; 0063p_WMO6903095; 0064a_WMO6903095; 0064p_WMO6903095; 0065a_WMO6903095; 0065p_WMO6903095; 0066a_WMO6903095; 0066p_WMO6903095; 0067a_WMO6903095; 0067p_WMO6903095; 0068a_WMO6903095; 0068p_WMO6903095; 0069a_WMO6903095; 0069p_WMO6903095; 0070a_WMO6903095; 0070p_WMO6903095; 0071a_WMO6903095; 0071p_WMO6903095; 0072a_WMO6903095; 0072p_WMO6903095; 0073a_WMO6903095; 0073p_WMO6903095; 0074a_WMO6903095; 0074p_WMO6903095; 0075a_WMO6903095; 0075p_WMO6903095; 0076a_WMO6903095; 0076p_WMO6903095; 0077a_WMO6903095; 0077p_WMO6903095; 0078a_WMO6903095; 0078p_WMO6903095; 0079a_WMO6903095; 0079p_WMO6903095; 0080a_WMO6903095; 0080p_WMO6903095; 0081a_WMO6903095; 0081p_WMO6903095; 0082a_WMO6903095; 0082p_WMO6903095; 0083a_WMO6903095; 0083p_WMO6903095; 0084a_WMO6903095; 0084p_WMO6903095; 0085a_WMO6903095; 0085p_WMO6903095; 0086a_WMO6903095; 0086p_WMO6903095; 0087a_WMO6903095; 0087p_WMO6903095; 0088a_WMO6903095; 0088p_WMO6903095; 0089a_WMO6903095; 0089p_WMO6903095; 0090a_WMO6903095; 0090p_WMO6903095; 0091a_WMO6903095; 0091p_WMO6903095; 0092a_WMO6903095; 0092p_WMO6903095; 0093a_WMO6903095; 0093p_WMO6903095; 0094a_WMO6903095; 0094p_WMO6903095; 0095a_WMO6903095; 0095p_WMO6903095; 0096a_WMO6903095; 0096p_WMO6903095; 0097a_WMO6903095; 0097p_WMO6903095; 0098a_WMO6903095; 0098p_WMO6903095; 0099a_WMO6903095; 0099p_WMO6903095; 0100a_WMO6903095; 0100p_WMO6903095; 0101a_WMO6903095; 0101p_WMO6903095; 0102a_WMO6903095; 0102p_WMO6903095; 0103a_WMO6903095; 0103p_WMO6903095; 0104a_WMO6903095; 0104p_WMO6903095; 0105a_WMO6903095; 0105p_WMO6903095; 0106a_WMO6903095; 0106p_WMO6903095; 0107a_WMO6903095; 0107p_WMO6903095; 0108a_WMO6903095; 0108p_WMO6903095; 0109a_WMO6903095; 0109p_WMO6903095; 0110a_WMO6903095; 0110p_WMO6903095; 0111a_WMO6903095; 0111p_WMO6903095; 0112a_WMO6903095; 0112p_WMO6903095; 0113a_WMO6903095; 0113p_WMO6903095; 0114a_WMO6903095; 0114p_WMO6903095; 0115a_WMO6903095; 0115p_WMO6903095; 0116a_WMO6903095; 0116p_WMO6903095; 0117a_WMO6903095; 0117p_WMO6903095; 0118a_WMO6903095; 0118p_WMO6903095; 0119a_WMO6903095; 0119p_WMO6903095; 0120a_WMO6903095; 0120p_WMO6903095; 0121a_WMO6903095; 0121p_WMO6903095; 0122a_WMO6903095; 0122p_WMO6903095; 0123a_WMO6903095; 0123p_WMO6903095; 0124a_WMO6903095; 0124p_WMO6903095; 0125a_WMO6903095; 0125p_WMO6903095; 0126a_WMO6903095; 0126p_WMO6903095; 0127a_WMO6903095; 0127p_WMO6903095; 0128a_WMO6903095; 0128p_WMO6903095; 0129a_WMO6903095; 0129p_WMO6903095; 0130a_WMO6903095; 0130p_WMO6903095; 0131a_WMO6903095; 0131p_WMO6903095; 0132a_WMO6903095; 0132p_WMO6903095; 0133a_WMO6903095; 0133p_WMO6903095; 0134a_WMO6903095; 0134p_WMO6903095; 0135a_WMO6903095; 0135p_WMO6903095; 0136a_WMO6903095; 0136p_WMO6903095; 0137a_WMO6903095; 0137p_WMO6903095; 0138a_WMO6903095; 0138p_WMO6903095; 0139a_WMO6903095; 0139p_WMO6903095; 0140a_WMO6903095; 0140p_WMO6903095; 0141a_WMO6903095; 0141p_WMO6903095; 0142a_WMO6903095; 0142p_WMO6903095; 0143a_WMO6903095; 0143p_WMO6903095; 0144a_WMO6903095; 0144p_WMO6903095; 0145a_WMO6903095; 0145p_WMO6903095; 0146a_WMO6903095; 0146p_WMO6903095; 0147a_WMO6903095; 0147p_WMO6903095; 0148a_WMO6903095; 0148p_WMO6903095; 0149a_WMO6903095; 0149p_WMO6903095; 0150a_WMO6903095; 0150p_WMO6903095; 0151a_WMO6903095; 0151p_WMO6903095; 0152a_WMO6903095; 0152p_WMO6903095; 0153a_WMO6903095; 0153p_WMO6903095; 0154a_WMO6903095; 0154p_WMO6903095; 0155a_WMO6903095; 0155p_WMO6903095; 0156a_WMO6903095; 0156p_WMO6903095; 0157a_WMO6903095; 0157p_WMO6903095; 0158a_WMO6903095; 0158p_WMO6903095; 0159a_WMO6903095; 0159p_WMO6903095; 0160a_WMO6903095; 0160p_WMO6903095; 0161a_WMO6903095; 0161p_WMO6903095; 0162a_WMO6903095; 0162p_WMO6903095; 0163a_WMO6903095; 0163p_WMO6903095; 0164a_WMO6903095; 0164p_WMO6903095; 0165a_WMO6903095; 0165p_WMO6903095; 0166a_WMO6903095; 0166p_WMO6903095; 0167a_WMO6903095; 0167p_WMO6903095; 0168a_WMO6903095; 0168p_WMO6903095; 0169a_WMO6903095; 0169p_WMO6903095; 0170a_WMO6903095; 0170p_WMO6903095; 0171a_WMO6903095; 0171p_WMO6903095; 0172a_WMO6903095; 0172p_WMO6903095; 0173a_WMO6903095; 0173p_WMO6903095; 0174a_WMO6903095; 0174p_WMO6903095; 0175a_WMO6903095; 0175p_WMO6903095; 0176a_WMO6903095; 0176p_WMO6903095; 0177a_WMO6903095; 0177p_WMO6903095; 0178a_WMO6903095; 0178p_WMO6903095; 0179a_WMO6903095; 0179p_WMO6903095; 0180a_WMO6903095; 0180p_WMO6903095; 0181a_WMO6903095; 0181p_WMO6903095; 0182a_WMO6903095; 0182p_WMO6903095; 0183a_WMO6903095; 0183p_WMO6903095; ARGOFL; Argo float; Biovolume; DATE/TIME; Event label; in situ imaging; LATITUDE; LONGITUDE; MOPGA-TAD; Particle concentration, fractionated; particle distribution; Pressure, water; Sample code/label; TRIATLAS; Tropical and South Atlantic climate-based marine ecosystem predictions for sustainable management; Tropical Atlantic Deoxygenation: gateway dynamics, feedback mechanisms and ecosystem impacts; Volume
    Type: Dataset
    Format: text/tab-separated-values, 2518238 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-13
    Description: This paper positions possibilities for human geographies of the sea. The growing volume of work under this banner has been largely qualitative in its approach, reflecting, in turn, the questions posed by oceanic scholars. These questions necessitate corresponding methods. Whilst this is not necessarily a problem, and the current corpus of work has offered many significant contributions, in making sense of the human dimensions of maritime worlds, other questions—and methods—may generate knowledge that is useful within this remit of work. This paper considers the place of quantitative approaches in posing lines of enquiry about shipping, one of the prominent areas of concern under the banner of ‘human geographies of the seas’. There is longstanding work in transport geographies concerned with shipping, logistics, freight movement and global connections, which embraces quantitative methods which could be bridged to ask fresh questions about oceanic spatial phenomena past and present. This paper reviews the state of the art of human geographies of the sea and transport geographies and navigates how the former field may be stimulated by some of the interests of the latter and a broader range of questions about society-sea-space relations. The paper focuses on Automatic Identification Systems (or AIS) as a potentially useful tool for connecting debates, and deepening spatial understandings of the seas and shipping beyond current scholarship. To advance the argument the example of shipping layups is used to illustrate or rather, position, the point.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-13
    Description: The jumbo squid, Dosidicus gigas, can survive extended forays into the oxygen minimum zone (OMZ) of the Eastern Pacific Ocean. Previous studies have demonstrated reduced oxygen consumption and a limited anaerobic contribution to ATP production, suggesting the capacity for substantial metabolic suppression during hypoxic exposure. Here, we provide a more complete description of energy metabolism and explore the expression of proteins indicative of transcriptional and translational arrest that may contribute to metabolic suppression. We demonstrate a suppression of total ATP demand under hypoxic conditions (1% oxygen, PO2=0.8 kPa) in both juveniles (52%) and adults (35%) of the jumbo squid. Oxygen consumption rates are reduced to 20% under hypoxia relative to air-saturated controls. Concentrations of arginine phosphate (Arg-P) and ATP declined initially, reaching a new steady state (~30% of controls) after the first hour of hypoxic exposure. Octopine began accumulating after the first hour of hypoxic exposure, once Arg-P breakdown resulted in sufficient free arginine for substrate. Octopine reached levels near 30 mmol g−1 after 3.4 h of hypoxic exposure. Succinate did increase through hypoxia but contributed minimally to total ATP production. Glycogenolysis in mantle muscle presumably serves to maintain muscle functionality and balance energetics during hypoxia. We provide evidence that post-translational modifications on histone proteins and translation factors serve as a primary means of energy conservation and that select components of the stress response are altered in hypoxic squids. Reduced ATP consumption under hypoxia serves to maintain ATP levels, prolong fuel store use and minimize the accumulation of acidic intermediates of anaerobic ATP-generating pathways during prolonged diel forays into the OMZ. Metabolic suppression likely limits active, daytime foraging at depth in the core of the OMZ, but confers an energetic advantage over competitors that must remain in warm, oxygenated surface waters. Moreover, the capacity for metabolic suppression provides habitat flexibility as OMZs expand as a result of climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-13
    Description: The copepod Calanus finmarchicus is a dominant zooplankter in the north Atlantic and is spreading northward into the Arctic due to ocean warming. The copepods life is characterized by diel vertical migration as well as a seasonal cycle with overwintering in deep waters. Although both phenome have been studied for more than a century, the exact factors controlling these rhythms are still unclear. Molecular techniques have precisely described genetic clockworks in several, mostly terrestrial species and there is clear evidence that clock genes are not only involved in the regulation of diel 24h rhythms, but can also play an important role in the synchronisation (entrainment) of the seasonal cycle. We present first records of clock gene expression in Calanus finmarchicus from Kongsfjorden, Svalbard and compare gene activity between specimen in the early and late phase of overwintering. Copepods were sampled from overwintering depth (〉220 m) in September 2014 when day length was about 10 hours and during polar night in January 2015. The results show clear 24h oscillations in most genes for September, whereas gene expression is generally lower and almost completely arrhythmic during the polar night. The results strongly point towards the existence of a light-entrained genetic clock in Calanus finmarchicus. As the regulators of seasonal timing in this species are still unclear, understanding the mechanism of the clock could help assessing the adaptability of this boreal species to the strongly fluctuating light conditions at high latitudes. This could be crucial in predicting future seasonal mismatches and ecosystem consequences.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3Time and Light: Novel Concepts and Models in Sensory and Chronobiology, Vienna, Austria, 2016-05-08-2016-05-10
    Publication Date: 2024-05-13
    Description: The copepod Calanus finmarchicus plays a crucial role in the north Atlantic food web, channelling energy from phytoplankton primary production to higher trophic levels including commercially important fish stocks like herring and cod. The copepod species is spreading northward into the Arctic due to ocean warming. The activity phase of C. finmarchicus in spring/summer is characterized by diel vertical migration, meaning that the animals migrate to surface waters around sunset to feed, and back to deeper layers around sunrise to hide from visual predators. This rhythmic vertical migration behaviour is characteristic for zooplankton communities all around the world. At the end of the activity phase in autumn, C. finmarchicus enters an overwintering mode and inactively dwell in deep waters until next spring when it starts a new generation cycle. Although both rhythms (diel and seasonal) have been studied for more than a century, the exact factors controlling them are still unclear. Molecular techniques have precisely described genetic clockworks in numerous species and there is clear evidence that clock genes are not only involved in the regulation of diel 24h rhythms, but also in the entrainment of the seasonal cycle. We present first records of clock gene expression in Calanus finmarchicus from a high Arctic fjord in Svalbard at 79°N and compare gene activity between specimen in the early and late phase of overwintering. Copepods were sampled from overwintering depth (〉220 m) in September 2014 when surface photoperiod was about 10 hours and during polar night in January 2015 when no light was present. Samples were analysed by quantitative real-time PCR (qRT-PCR) using custom designed Taqman® low-density array cards. The results show clear 24h oscillations in most genes for September, whereas gene expression is almost completely arrhythmic during the polar night in January. It furthermore appears that in September most of the investigated clock genes show distinct expressions patterns, which often match pattern previously observed in other (model) species. For example, expression of period (1 & 2) is highest around sunset (per1) or early night (per2) whereas activity of clock sharply increases around sunrise and peaks in the afternoon. Expression of cryptochrome 1 is highest around midnight while expression of cryptochrome 2 shows patterns similar to those of the period genes. The results strongly point towards the existence of a light-entrained genetic clock in Calanus finmarchicus that becomes arrhythmic during the constant darkness of the polar night. Our work presents an example on how the vast mechanistic knowledge about endogenous timekeeping gained from model organisms can be transferred to field studies on non-model species of high ecological relevance.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    INTER-RESEARCH
    In:  EPIC3Marine Ecology-Progress Series, INTER-RESEARCH, 603, pp. 79-92, ISSN: 0171-8630
    Publication Date: 2024-05-13
    Description: Changing environmental conditions cause poleward distribution shifts in many marine organisms including the northern Atlantic key zooplankton species Calanus finmarchicus. The copepod has diel cycles of vertical migration and feeding, a seasonal life cycle with diapause in winter and a functioning circadian clock. Endogenous clock mechanisms control various aspects of rhythmic life and are heavily influenced by environmental light conditions. Here we explore how the extreme seasonal change in photoperiod (day length) in a high Arctic fjord affects circadian clock functioning as well as diel and seasonal cycles in C. finmarchicus. Expression of clock genes was measured in the active life phase at the end of midnight sun, in early diapause when photoperiod was ~12 h, and in late diapause during the polar night. While the clock maintained diel rhythmicity under extremely long photoperiods, it became arrhythmic during diapause. This was probably not due to a lack of light but was related to the physiological state of diapause. Seasonal expression analyses of 35 genes show distinct patterns for each investigated life phase. C. finmarchicus is able to maintain diel clock rhythmicity at photoperiods close to 24 h, and it is discussed how this may be related to the nature of the marine environment. The work also evaluates the potential negative consequences of rigid clock-based seasonal timing in a polar environment exposed to climate change and with high interannual variability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    CELL PRESS
    In:  EPIC3Current Biology, CELL PRESS, 27(14), pp. 2194-2201, ISSN: 0960-9822
    Publication Date: 2024-05-13
    Description: Biological clocks are a ubiquitous ancient and adaptive mechanism enabling organisms to anticipate environmental cycles and to regulate behavioral and physiological processes accordingly [1]. Although terrestrial circadian clocks are well understood, knowledge of clocks in marine organisms is still very limited [2–5]. This is particularly true for abundant species displaying large-scale rhythms like diel vertical migration (DVM) that contribute significantly to shaping their respective ecosystems [6]. Here we describe exogenous cycles and endogenous rhythms associated with DVM of the ecologically important and highly abundant planktic copepod Calanus finmarchicus. In the laboratory, C. finmarchicus shows circadian rhythms of DVM, metabolism, and most core circadian clock genes (clock, period1, period2, timeless, cryptochrome2, and clockwork orange). Most of these genes also cycle in animals assessed in the wild, though expression is less rhythmic at depth (50–140 m) relative to shallow-caught animals (0–50 m). Further, peak expressions of clock genes generally occurred at either sunset or sunrise, coinciding with peak migration times. Including one of the first field investigations of clock genes in a marine species [5, 7], this study couples clock gene measurements with laboratory and field data on DVM. While the mechanistic connection remains elusive, our results imply a high degree of causality between clock gene expression and one of the planet’s largest daily migrations of biomass. We thus suggest that circadian clocks increase zooplankton fitness by optimizing the temporal trade-off between feeding and predator avoidance, especially when environmental drivers are weak or absent [8].
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-13
    Description: Ocean warming and acidification are two important environmental drivers affecting marine organisms. Organisms living at high latitudes might be especially threatened in near future, as current environmental changes are larger and occur faster. Therefore, we investigated the effect of hypercapnia on thermal tolerance and physiological performance of sub-Arctic Mytilus edulis from the White Sea. Mussels were exposed (2 weeks) to 390 µatm (control) and 1,120 µatm CO2 (year 2100) before respiration rate (MO2), anaerobic metabolite (succinate) level, haemolymph acid-base status, and intracellular pH (pHi) were determined during acute warming (10-28°C, 3°C over night). In normocapnic mussels, warming induced MO2 to rise exponentially until it levelled off beyond a breakpoint temperature of 20.5°C. Concurrently, haemolymph PCO2 rose significantly 〉19°C followed by a decrease in PO2 indicating the pejus temperature (TP, onset of thermal limitation). Succinate started to accumulate at 28°C under normocapnia defining the critical temperature (TC). pHi was maintained during warming until it dropped at 28°C, in line with the concomitant transition to anaerobiosis. At acclimation temperature, CO2 had only a minor impact. During warming, MO2 was stimulated by CO2 resulting in an elevated breakpoint of 25.8°C. Nevertheless, alterations in haemolymph gases (〉16°C) and the concomitant changes of pHi and succinate level (25°C) occurred at lower temperature under hypercapnia versus normocapnia indicating a downward shift of both thermal limits TP and TC by CO2. Compared to temperate conspecifics, sub-Arctic mussels showed an enhanced thermal sensitivity, exacerbated further by hypercapnia, indicating their potential vulnerability to environmental changes projected for 2100.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Polar Night Marine Ecology_ Life and Light in the Dead of Night, Advances in Polar Ecology, Switzerland, Springer, pp. 217-240, ISBN: 978-3-030-33208-2
    Publication Date: 2024-05-13
    Description: Biological clocks are universal to all living organisms on Earth. Their ubiquity is testament to their importance to life: from cells to organs and from the simplest cyanobacteria to plants and primates, they are central to orchestrating life on this planet. Biological clocks are usually set by the day–night cycle, so what happens in polar regions during the Polar Night or Polar Day when there are periods of 24! hours of darkness or light? How would a biological clock function without a timekeeper!cycle? This chapter details evidence that biological clocks are central to structuring daily and seasonal activities in organisms at high latitudes. Importantly, despite a strongly reduced or absent day–night cycle, biological clocks in the Polar Night still appear to be regulated by background illumination. Here we explore evidence for highly cyclic activity, from behaviour patterns to clock gene expression, in copepods, krill and bivalves. The ultimate goal will be to understand the role of endogenous clocks in driving important daily and seasonal life cycle functions and to determine scope for plasticity in a rapidly changing environment.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-05-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Springer International Publishing
    In:  EPIC3Springer International Publishing, 4, pp. 217-240, ISBN: 9783030332075
    Publication Date: 2024-05-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-05-13
    Description: This paper positions possibilities for human geographies of the sea. The growing volume of work under this banner has been largely qualitative in its approach, reflecting, in turn, the questions posed by oceanic scholars. These questions necessitate corresponding methods. Whilst this is not necessarily a problem, and the current corpus of work has offered many significant contributions, in making sense of the human dimensions of maritime worlds, other questions—and methods—may generate knowledge that is useful within this remit of work. This paper considers the place of quantitative approaches in posing lines of enquiry about shipping, one of the prominent areas of concern under the banner of ‘human geographies of the seas’. There is longstanding work in transport geographies concerned with shipping, logistics, freight movement and global connections, which embraces quantitative methods which could be bridged to ask fresh questions about oceanic spatial phenomena past and present. This paper reviews the state of the art of human geographies of the sea and transport geographies and navigates how the former field may be stimulated by some of the interests of the latter and a broader range of questions about society-sea-space relations. The paper focuses on Automatic Identification Systems (or AIS) as a potentially useful tool for connecting debates, and deepening spatial understandings of the seas and shipping beyond current scholarship. To advance the argument the example of shipping layups is used to illustrate or rather, position, the point.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    AMER SOC LIMNOLOGY OCEANOGRAPHY
    In:  EPIC3Limnology and Oceanography, AMER SOC LIMNOLOGY OCEANOGRAPHY, ISSN: 0024-3590
    Publication Date: 2024-05-13
    Description: The copepod Calanus finmarchicus plays a crucial role in the north Atlantic food web. Its seasonal life cycle involves reproduction and development in surface waters before overwintering in diapause at depth. Although diapause has been studied for more than a century, the factors responsible for the initiation and termination of it are still unclear. Endogenous clocks have been identified as potent tools for photoperiod measurement and seasonal rhythmicity in many terrestrial species, but knowledge of these remains scarce in the marine realm. Focusing on the dominant CV copepodid stage, we sampled a population of C. finmarchicus from a Scottish sea loch to characterize population dynamics, several physiological parameters, and diel and seasonal expression rhythms of 35 genes representing different metabolic pathways, including the circadian clock machinery. This generated a detailed overview of the seasonal cycle of C. finmarchicus including the most extensive field dataset on circadian clock gene expression in a marine species to date. Gene expression patterns revealed distinct gene clusters upregulated at different phases of the copepod’s seasonal cycle. While diel clock cycling was restricted to the active spring/summer phase, many clock genes exhibited the highest expression during diapause. Our results provide new insights into diapause on physiological and genetic levels. We suggest that photoperiod, in interaction with internal and external factors (lipid content, temperature, food availability) and the endogenous clock mechanism, plays an important role in the timing of diapause in C. finmarchicus.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-05-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Thesis , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-05-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Thesis , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-05-13
    Description: 〈jats:p〉Central Arctic properties and processes are important to the regional and global coupled climate system. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Distributed Network (DN) of autonomous ice-tethered systems aimed to bridge gaps in our understanding of temporal and spatial scales, in particular with respect to the resolution of Earth system models. By characterizing variability around local measurements made at a Central Observatory, the DN covers both the coupled system interactions involving the ocean-ice-atmosphere interfaces as well as three-dimensional processes in the ocean, sea ice, and atmosphere. The more than 200 autonomous instruments (“buoys”) were of varying complexity and set up at different sites mostly within 50 km of the Central Observatory. During an exemplary midwinter month, the DN observations captured the spatial variability of atmospheric processes on sub-monthly time scales, but less so for monthly means. They show significant variability in snow depth and ice thickness, and provide a temporally and spatially resolved characterization of ice motion and deformation, showing coherency at the DN scale but less at smaller spatial scales. Ocean data show the background gradient across the DN as well as spatially dependent time variability due to local mixed layer sub-mesoscale and mesoscale processes, influenced by a variable ice cover. The second case (May–June 2020) illustrates the utility of the DN during the absence of manually obtained data by providing continuity of physical and biological observations during this key transitional period. We show examples of synergies between the extensive MOSAiC remote sensing observations and numerical modeling, such as estimating the skill of ice drift forecasts and evaluating coupled system modeling. The MOSAiC DN has been proven to enable analysis of local to mesoscale processes in the coupled atmosphere-ice-ocean system and has the potential to improve model parameterizations of important, unresolved processes in the future.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-05-13
    Description: The copepod Calanus finmarchicus has an ecological key position in the northern Atlantic pelagic food web and its life is characterized by diel and seasonal rhythmicity. Neither diel nor seasonal rhythmicity of C. finmarchicus are understood with regard to their mechanistic regulation. Endogenous clock systems are central in controlling rhythms in various terrestrial species, but have hardly been investigated in marine organisms. This thesis shows that C. finmarchicus possesses an endogenous circadian clock, that regulated 24h rhythms of gene expression, metabolic activity and vertical migration behavior. The thesis further suggests that clock-based day length measurement and an endogenous annual clock is involved in the regulation of seasonal rhythmicity. The findings on C. finmarchicus’ timing systems are further related to the extreme light conditions in polar environments, discussing potential effects of climate chance on the copepods rhythmicity and biology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Thesis , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-05-13
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: contributiontoperiodical , doc-type:contributionToPeriodical
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Marburg : Metropolis-Verlag
    Publication Date: 2024-05-13
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: bookpart , doc-type:bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-05-13
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: contributiontoperiodical , doc-type:contributionToPeriodical
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Marburg : Metropolis-Verlag
    Publication Date: 2024-05-13
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: bookpart , doc-type:bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-05-13
    Description: The steel and chemical production industries are the largest industrial emitters of greenhouse gases in the European Union, together accounting for half of the EU’s industrial greenhouse gas (GHG) emissions. A promising strategy for achieving deep GHG emissions reductions is the electrification of these two industries, which would depend on the rapid expansion of renewable electricity supply. Such electrification can be direct, where electrical appliances replace fossil fuel powered ones, or indirect, using renewable hydrogen produced from water by electricity. Both methods of electrification represent a systemic shift for these industrial systems and require a major wave of investment into new process technologies, as well as access to renewable electricity and green hydrogen. Old industrial structures could become stranded as a consequence of shifting energy and feedstock supply in this way. The thesis focuses geographically on the major region for EU steel and chemical production: the area between the two North Sea ports of Antwerp and Rotterdam in the west and the Rhine-Ruhr area in the east. It studies the technical and economic feasibility of electrification in the steel and chemical production industries (specifically petrochemicals), followed by an analysis of the impact on locational factors and possible spatial reconfigurations of the production system. The analysis builds on scenario methodology with extensive stakeholder engagement and uses different quantitative bottom-up models developed during several projects. To accelerate and facilitate the transformation of the two focal industries in the region, the thesis identifies strategic options for policy makers, steel and petrochemical companies, as well as for infrastructure providers such as port authorities and network operators. The results obtained demonstrate the feasibility of electrification and its potential to play a crucial role in the defossilised production of steel and petrochemicals, even in a region with a relatively low renewable electricity potential (such as the one studied). The transformation requires a hydrogen infrastructure for steel and petrochemical clusters and increased circularity, especially in the petrochemical industry. Some production steps in the value chain, such as iron making or chemical feedstock production, will have strong incentives to relocate (either partially or fully). However, other factors, such as the benefits of existing assets and the advantages of vertical integration in existing clusters, may discourage the total relocation of entire production chains.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-05-13
    Description: Energy performance contracting (EPC) as a market instrument has been effective in promoting energy efficiency worldwide, but it has encountered many insurmountable obstacles in rural energy management. In this study, based on the characteristics of energy management in rural areas, three EPC modes are designed and tested in 24,000 rural households. The test results show that two adapted EPC modes of local government involvement and energy payment directly from the national grid can effectively overcome the barriers encountered in the traditional EPC modes and work well under the economic and social environmental conditions in rural areas. The key to the adaptation of the traditional EPC modes is the introduction of the local government as the third party. Participation of the third party can effectively reduce and remove the barriers and risks and increase the mutual trust between the clients (households) and the energy service companies (ESCOs). Based on the testing results, this study suggests that governmental departments should formulate relevant EPC policies and technical guidelines within the rural context. This research recommends that farmers should not manage their energy services by themselves and it is suggested to out-contracting ESCOs by applying the modes developed and tested by this paper.
    Keywords: ddc:330
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-05-13
    Description: In Germany, there are over 32,000 schools, representing great potential for climate protection. On the one hand, this applies to educational work, as understanding the effects of climate change and measures to reduce GHG emissions is an important step to empower students with knowledge and skills. On the other hand, school buildings are often in bad condition, energy is wasted, and the possibilities for using renewable energies are hardly used. In our "Schools4Future" project, we enabled students and teachers to draw up their own CO2 balances, identify weaknesses in the building, detect wasted electricity, and determine the potential for using renewable energies. Emissions from the school cafeteria, school trips, and paper consumption could also be identified. The fact that the data can be collected by the students themselves provides increased awareness of the contribution made to the climate balance by the various school areas. The most climate-friendly school emits 297 kg whilst the school with the highest emissions emits over one ton CO2 per student and year. Our approach is suitable to qualify students in the sense of citizen science, carry out a scientific investigation, experience self-efficacy through one's own actions, and engage politically regarding their concerns.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-05-13
    Description: Agriculture is a major sector responsible for greenhouse gas emissions. Local food production can contribute to reducing transport-related emissions. Since most of the worldwide population lives in cities, locally producing food implies practicing agriculture in urban and peri-urban areas. Exemplary, we analyze the potential to produce fresh vegetables within Berlin, Germany. We investigate the spatial extent of five different urban spaces for soil-based agriculture or gardening, i.e., non-built residential areas, allotment gardens, rooftops, supermarket parking lots, and cemeteries. We also quantify inputs required for such food production in terms of water, human resources, and investment. Our findings highlight that up to 82% of Berlin’s vegetable demand could be produced within the city, based on a reasonable validation of existing areas. Meeting this potential requires 42 km2 of urban spaces for cultivation, a considerable amount of irrigation water, around 17 thousand gardeners, and over 750 million EUR of initial investments. The final vegetable cost would be around 2 EUR to 10 EUR per kg without any profit margin. We conclude that it is realistic to produce a significant amount of Berlin's vegetable demand within the city, even if it comes with great challenges.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-05-13
    Description: Eine neue digital-ökologische Staatskunst ist die unverzichtbare Voraussetzung für wirksames staatliches Handeln zur sozial-ökologischen Gestaltung der digitalen Transformation. Der Bericht beschreibt am Beispiel der Plattformökonomie die Herausforderungen, Ansatzpunkte und mögliche Maßnahmen.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Description: This is a compilation of all short-wave and long-wave radiation datasets from Sonnblick that were and are published in the frame of BSRN. New data will be added regularly. The data are subject to the data release guidelines of BSRN (https://bsrn.awi.de/data/conditions-of-data-release/).
    Keywords: Austria; Baseline Surface Radiation Network; BSRN; Monitoring station; MONS; SON; Sonnblick
    Type: Dataset
    Format: application/zip, 154 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-05-13
    Description: Snow height was measured by the Snow Depth Buoy 2018S78, an autonomous platform, drifting on Arctic sea ice, deployed during AKADEMIK TRYOSHNIKOV cruise TRANSDRIFT XXIV (TICE). The resulting time series describes the evolution of snow depth as a function of place and time between 16 September 2018 and 16 February 2020 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on multi year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and an internal ice temperature were measured. Negative values of snow height occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.
    Keywords: 2018S78, WMO-ID 2501653; Akademik Tryoshnikov; AT2018, TICE, NABOS; autonomous platform; AWI_SeaIce; buoy; BUOY_SNOW; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; LATITUDE; LONGITUDE; meereisportal.de; MIDO; Multidisciplinary Ice-based Distributed Observatory; Pressure, atmospheric; Sea Ice Physics @ AWI; Snow buoy; snow depth; Snow height; Temperature, air; Temperature, technical; TICE/8_2018S78; Transdrift-XXIV
    Type: Dataset
    Format: text/tab-separated-values, 46680 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-05-13
    Description: This bibliography unites the individual data collected by different types of autonomous platforms deployed during MOSAiC in 2019/2020.
    Keywords: Atmosphere; autonomous platform; distributed network; drift; MOSAiC; MOSAiC_ATMOS; MOSAiC_ICE; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oceans; Sea ice; snow
    Type: Dataset
    Format: 71 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090222, WRMC No. 75006; Pyranometer, Kipp & Zonen, CMP21, SN 090223, WRMC No. 75005; Pyrgeometer, Kipp & Zonen, CGR4, SN 120498, WRMC No. 75007; Pyrheliometer, Hukseflux, DR02-T1-10, SN 120498, WRMC No. 75008; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 579614 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090222, WRMC No. 75006; Pyranometer, Kipp & Zonen, CMP21, SN 090223, WRMC No. 75005; Pyrgeometer, Kipp & Zonen, CGR4, SN 120498, WRMC No. 75007; Pyrheliometer, Hukseflux, DR02-T1-10, SN 120498, WRMC No. 75008; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 599077 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090222, WRMC No. 75006; Pyranometer, Kipp & Zonen, CMP21, SN 090223, WRMC No. 75005; Pyrgeometer, Kipp & Zonen, CGR4, SN 120498, WRMC No. 75007; Pyrheliometer, Hukseflux, DR02-T1-10, SN 120498, WRMC No. 75008; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 816614 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2024-05-13
    Description: The ²³⁴Th-²³⁸U radioactive pair has been extensively used to evaluate the efficiency with which photosyntetically fixed carbon is exported from the surface ocean by means of the biological pump since the 90's. The seminal work of Buesseler et al. (1992) proposed that particulate organic carbon (POC) flux can be indirectly calculated from ²³⁴Th distributions if the ratio of POC to ²³⁴Th measured on sinking particles (POC:²³⁴Th) at the desired export depth is known. Since then, a huge amount of ²³⁴Th depth profiles have been collected using a variety of sampling instruments and strategies that have changed along years. This is a global oceanic compilation of ²³⁴Th measurements, that collects results from innumerable researchers and laboratories over a period exceeding 50 years. The present compilation is made of a total 223 datasets: 214 from studies published either in articles in referred journals, PhD thesis or repositories, and 9 unpublished datasets. Including measurements from JGOFS, VERTIGO and GEOTRACES programs, with sampling from approximately 5000 locations spanning all the oceans. The compilation includes total ²³⁴Th profiles, dissolved and particulate ²³⁴Th concentrations, and POC:²³⁴Th ratios (both from pumps and sediment traps) for two sizes classes (1-53 μm and 〈 53 μm) when available. Appropriate metadata have been included, including geographic location, date, and sample depth, among others. When available, we also include water temperature, salinity, ²³⁸U data and particulate organic nitrogen data. Data sources and methods information (including ²³⁸U and ²³⁴Th) are also detailed along with valuable information for future data analysis such as bloom stage and steady/non-steady state conditions at the sampling moment. This undertaking is a treasure of data to understand and quantify how oceanic carbon cycle functions and how it will change in future. The compilation can be downloaded in three different ways: 1) A single merged file including all the individual excel files. This option can be accessed under "Other version: More than 50 years of Th-234 data: a comprehensive global oceanic compilation (single xlsx file)". 2) A summary table that includes details from cruise, sampling dates, techniques applied, authors and DOI of the compiled ²³⁴Th data, among others, each line corresponds to a specific dataset. The table can be accessed by clicking ""View dataset as HTML" and downloaded in "Download dataset as tab-delimited text". 3) Individual Excel files for each dataset can be manually chosen from the summary table, corresponding to the complete ²³⁴Th dataset and metadata from a specific publication or program. This option is available by clicking "View dataset as HTML". Furthermore, all files referred to can be downloaded in one go as ZIP or TAR.
    Keywords: 234Th; Author(s); Binary Object; biological carbon pump; Carbon, organic, particulate/Thorium-234 ratio; carbon export; Chief scientist(s); Cruise/expedition; DATE/TIME; ELEVATION; Gear; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; JGOFS; Joint Global Ocean Flux Study; Journal/report title; LATITUDE; LONGITUDE; Multiple cruises/expeditions; Ocean; Ocean and sea region; Period; POC flux; Project; Reference of data; Thorium-234, dissolved; Thorium-234, particulate; Thorium-234, total; Uniform resource locator/link to reference; Uranium-238; Vessel; Year of publication
    Type: Dataset
    Format: text/tab-separated-values, 4056 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 100393, WRMC No. 75014; Pyranometer, Kipp & Zonen, CMP21, SN 100579, WRMC No. 75016; Pyrgeometer, Kipp & Zonen, CGR4, SN 060004, WRMC No. 75015; Pyrheliometer, Hukseflux, DR02-T2-10, SN 9119, WRMC No. 75013; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 801878 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 100393, WRMC No. 75014; Pyranometer, Kipp & Zonen, CMP21, SN 100579, WRMC No. 75016; Pyrgeometer, Kipp & Zonen, CGR4, SN 060004, WRMC No. 75015; Pyrheliometer, Hukseflux, DR02-T2-10, SN 9119, WRMC No. 75013; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 762672 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090221, WRMC No. 75010; Pyranometer, Kipp & Zonen, CMP21, SN 100537, WRMC No. 75011; Pyrgeometer, Kipp & Zonen, CGR4, SN 140065, WRMC No. 75012; Pyrheliometer, Hukseflux, DR02-T2-10, SN 9120, WRMC No. 75009; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 595139 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-05-13
    Description: Ocean Alkalinity Enhancement (OAE) could augment long-term carbon storage and mitigate ocean acidification by increasing the bicarbonate ion concentration in ocean water. However, the side effects and/or potential co-benefits of OAE on natural planktonic communities remain poorly understood. To address this knowledge gap, 9 mesocosms were deployed in the oligotrophic waters of Gran Canaria, from September 14th to October 16th, 2021. A CO2-equilibrated Total Alkalinity (TA) gradient was employed in increments of 300 µmol·L-1, ranging from ~2400 to ~4800 µmol·L-1. The carbonate chemistry conditions in terms of TA and Dissolved Inorganic Carbon (DIC), which were then used to calculate pCO2 and pH, and the nitrate+nitrite, phosphate and silicate concentrations were measured every two days over the course of the 33-day experiment alongside the following biotic parameters. Net Community Production (NCP), Gross Production (GP), Community Respiration (CR) rates, as well as the metabolic balance (GP:CR), were monitored every two days through oxygen production and consumption using the winkler method. Fractionated 14C uptake and chlorophyll a were also determined every four days although, initially, the total PO14C and DO14C production were also measured every 4 days, in between, up to day 13. Finally, flow cytometry was also carried out every two days and synecococcus, picoeukaryote and nanophytoplankton abundances were obtained. No damaging effect of CO2-equilibrated OAE in the range applied here, on phytoplankton primary production, community metabolism and composition could be inferred from our results. In fact, a potential co-benefit to OAE was observed in the form of the positive curvilinear response to the DIC gradient up to the ∆TA1800 treatment. Further experimental research at this scale is key to gain a better understanding of the short and long-term effects of OAE on planktonic communities.
    Keywords: 14C-DOC; 14C-POC; 14C uptake; AQUACOSM; Canarias Sea; Chlorophyll a, total; chlorophyll-a concentration; Chlorophyll a microplankton; Chlorophyll a nanoplankton; Chlorophyll a picoplankton; DATE/TIME; Day of experiment; Depth, water, experiment, bottom/maximum; Depth, water, experiment, top/minimum; Event label; Extracellular release; Field experiment; flow cytometry; Flow cytometry; Gross community production/respiration rate, oxygen, ratio; Gross community production of oxygen; Identification; KOSMOS_2021; KOSMOS_2021_Mesocosm-M1; KOSMOS_2021_Mesocosm-M2; KOSMOS_2021_Mesocosm-M3; KOSMOS_2021_Mesocosm-M4; KOSMOS_2021_Mesocosm-M5; KOSMOS_2021_Mesocosm-M6; KOSMOS_2021_Mesocosm-M7; KOSMOS_2021_Mesocosm-M8; KOSMOS_2021_Mesocosm-M9; KOSMOS Gran Canaria; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Nanoeukaryotes; Net community production of oxygen; Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean; Ocean-based Negative Emission Technologies; OceanNETs; Picoeukaryotes; primary production; Primary production of carbon, organic, dissolved; Primary production of carbon, organic, particulate; Primary production of carbon, organic, total; Respiration rate, oxygen, community; Synechococcus; Treatment: alkalinity, total; Type of study; Winkler oxygen
    Type: Dataset
    Format: text/tab-separated-values, 3828 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 110716, WRMC No. 75001; Pyranometer, Kipp & Zonen, CMP21, SN 110717, WRMC No. 75002; Pyrgeometer, Kipp & Zonen, CGR4, SN 060003, WRMC No. 75004; Pyrheliometer, Kipp & Zonen, CHP 1, SN 120921, WRMC No. 75003; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 757183 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 110716, WRMC No. 75001; Pyranometer, Kipp & Zonen, CMP21, SN 110717, WRMC No. 75002; Pyrgeometer, Kipp & Zonen, CGR4, SN 060003, WRMC No. 75004; Pyrheliometer, Kipp & Zonen, CHP 1, SN 120921, WRMC No. 75003; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 821172 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090222, WRMC No. 75006; Pyranometer, Kipp & Zonen, CMP21, SN 090223, WRMC No. 75005; Pyrgeometer, Kipp & Zonen, CGR4, SN 120498, WRMC No. 75007; Pyrheliometer, Hukseflux, DR02-T1-10, SN 120498, WRMC No. 75008; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 716944 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090222, WRMC No. 75006; Pyranometer, Kipp & Zonen, CMP21, SN 090223, WRMC No. 75005; Pyrgeometer, Kipp & Zonen, CGR4, SN 120498, WRMC No. 75007; Pyrheliometer, Hukseflux, DR02-T1-10, SN 120498, WRMC No. 75008; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 773540 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090222, WRMC No. 75006; Pyranometer, Kipp & Zonen, CMP21, SN 090223, WRMC No. 75005; Pyrgeometer, Kipp & Zonen, CGR4, SN 120498, WRMC No. 75007; Pyrheliometer, Hukseflux, DR02-T1-10, SN 120498, WRMC No. 75008; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 701868 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090222, WRMC No. 75006; Pyranometer, Kipp & Zonen, CMP21, SN 090223, WRMC No. 75005; Pyrgeometer, Kipp & Zonen, CGR4, SN 120498, WRMC No. 75007; Pyrheliometer, Hukseflux, DR02-T1-10, SN 120498, WRMC No. 75008; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 566261 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090222, WRMC No. 75006; Pyranometer, Kipp & Zonen, CMP21, SN 090223, WRMC No. 75005; Pyrgeometer, Kipp & Zonen, CGR4, SN 120498, WRMC No. 75007; Pyrheliometer, Hukseflux, DR02-T1-10, SN 120498, WRMC No. 75008; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 817605 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090222, WRMC No. 75006; Pyranometer, Kipp & Zonen, CMP21, SN 090223, WRMC No. 75005; Pyrgeometer, Kipp & Zonen, CGR4, SN 120498, WRMC No. 75007; Pyrheliometer, Hukseflux, DR02-T1-10, SN 120498, WRMC No. 75008; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 763011 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090221, WRMC No. 75010; Pyranometer, Kipp & Zonen, CMP21, SN 100537, WRMC No. 75011; Pyrgeometer, Kipp & Zonen, CGR4, SN 140065, WRMC No. 75012; Pyrheliometer, Hukseflux, DR02-T2-10, SN 9120, WRMC No. 75009; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 792703 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090221, WRMC No. 75010; Pyranometer, Kipp & Zonen, CMP21, SN 100537, WRMC No. 75011; Pyrgeometer, Kipp & Zonen, CGR4, SN 140065, WRMC No. 75012; Pyrheliometer, Hukseflux, DR02-T2-10, SN 9120, WRMC No. 75009; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 787450 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090221, WRMC No. 75010; Pyranometer, Kipp & Zonen, CMP21, SN 100537, WRMC No. 75011; Pyrgeometer, Kipp & Zonen, CGR4, SN 140065, WRMC No. 75012; Pyrheliometer, Hukseflux, DR02-T2-10, SN 9120, WRMC No. 75009; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 832535 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090221, WRMC No. 75010; Pyranometer, Kipp & Zonen, CMP21, SN 100537, WRMC No. 75011; Pyrgeometer, Kipp & Zonen, CGR4, SN 140065, WRMC No. 75012; Pyrheliometer, Hukseflux, DR02-T2-10, SN 9120, WRMC No. 75009; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 837510 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...