ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (260)
  • Models, Molecular  (214)
  • American Association for the Advancement of Science (AAAS)  (462)
  • 1990-1994  (462)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 1990-08-17
    Description: The transcription factor C/EBP uses a bipartite structural motif to bind DNA. Two protein chains dimerize through a set of amphipathic alpha helices termed the leucine zipper. Highly basic polypeptide regions emerge from the zipper to form a linked set of DNA contact surfaces. In the recently proposed a "scissors grip" model, the paired set of basic regions begin DNA contact at a central point and track in opposite directions along the major groove, forming a molecular clamp around DNA. This model predicts that C/EBP must undertake significant changes in protein conformation as it binds and releases DNA. The basic region of ligand-free C/EBP is highly sensitive to protease digestion. Pronounced resistance to proteolysis occurred when C/EBP associated with its specific DNA substrate. Sequencing of discrete proteolytic fragments showed that prominent sites for proteolysis occur at two junction points predicted by the "scissors grip" model. One junction corresponds to the cleft where the basic regions emerge from the leucine zipper. The other corresponds to a localized nonhelical segment that has been hypothesized to contain an N-cap and facilitate the sharp angulation necessary for the basic region to track continuously in the major groove of DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shuman, J D -- Vinson, C R -- McKnight, S L -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):771-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Research Laboratories, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2202050" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; CCAAT-Enhancer-Binding Proteins ; Chromatography, High Pressure Liquid ; DNA/*metabolism ; DNA-Binding Proteins/metabolism ; Kinetics ; Leucine ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/*metabolism ; Peptide Fragments/metabolism ; Peptide Hydrolases/*metabolism ; Protein Conformation ; Transcription Factors/*metabolism ; Trypsin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-04-27
    Description: Light-dependent expression of rbcS, the gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase, which is the key enzyme involved in carbon fixation in higher plants, is regulated at the transcriptional level. Sequence analysis of the gene has uncovered a conserved GT motif in the -150 to -100 region of many rbcS promoters. This motif serves as the binding site of a nuclear factor, designated GT-1. Analysis of site-specific mutants of pea rbcS-3A promoter demonstrated that GT-1 binding in vitro is correlated with light-responsive expression of the rbcS promoter in transgenic plants. However, it is not known whether factors other than GT-1 might also be required for activation of transcription by light. A synthetic tetramer of box II (TGTGTGGTTAATATG), the GT-1 binding site located between -152 to -138 of the rbcS-3A promoter, inserted upstream of a truncated cauliflower mosaic virus 35S promoter is sufficient to confer expression in leaves of transgenic tobacco. This expression occurs principally in chloroplast-containing cells, is induced by light, and is correlated with the ability of box II to bind GT-1 in vitro. The data show that the binding site for GT-1 is likely to be a part of the molecular light switch for rbcS activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, E -- Chua, N H -- New York, N.Y. -- Science. 1990 Apr 27;248(4954):471-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2330508" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Chloramphenicol O-Acetyltransferase/genetics ; Cloning, Molecular ; DNA-Binding Proteins/*metabolism ; Gene Expression Regulation/*physiology ; Genetic Vectors ; *Light ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/*metabolism ; Plant Proteins/*metabolism ; *Plants, Toxic ; Promoter Regions, Genetic/genetics ; Ribulose-Bisphosphate Carboxylase/*genetics ; Tobacco/enzymology/*genetics ; Transcription, Genetic/radiation effects ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-07-13
    Description: The heterotrimeric guanine nucleotide-binding regulatory proteins act at the inner surface of the plasma membrane to relay information from cell surface receptors to effectors inside the cell. These G proteins are not integral membrane proteins, yet are membrane associated. The processing and function of the gamma subunit of the yeast G protein involved in mating-pheromone signal transduction was found to be affected by the same mutations that block ras processing. The nature of these mutations implied that the gamma subunit was polyisoprenylated and that this modification was necessary for membrane association and biological activity. A microbial screen was developed for pharmacological agents that inhibit polyisoprenylation and that have potential application in cancer therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finegold, A A -- Schafer, W R -- Rine, J -- Whiteway, M -- Tamanoi, F -- CA 41996/CA/NCI NIH HHS/ -- GM 07183/GM/NIGMS NIH HHS/ -- GM 35827/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 13;249(4965):165-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1695391" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Membrane/metabolism ; Cloning, Molecular ; Epitopes/genetics ; GTP-Binding Proteins/genetics/*metabolism ; Hemagglutinins, Viral/immunology ; Lovastatin/pharmacology ; Mevalonic Acid/pharmacology ; Molecular Sequence Data ; Mutation ; Oncogene Protein p21(ras)/genetics/*metabolism ; Orthomyxoviridae/immunology ; Protein Processing, Post-Translational ; Saccharomyces cerevisiae/*genetics/metabolism ; Signal Transduction ; Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1990-08-24
    Description: The protein Felix was designed de novo to fold into an antiparallel four-helix bundle of specific topology. Its sequence of 79 amino acid residues is not homologous to any known protein sequence, but is "native-like" in that it is nonrepetitive and contains 19 of the 20 naturally occurring amino acids. Felix has been expressed from a synthetic gene cloned in Escherichia coli, and the protein has been purified to homogeneity. Physical characterization of the purified protein indicates that Felix (i) is monomeric in solution, (ii) is predominantly alpha-helical, (iii) contains a designed intramolecular disulfide bond linking the first and fourth helices, and (iv) buries its single tryptophan in an apolar environment and probably in close proximity with the disulfide bond. These physical properties rule out several alternative structures and indicate that Felix indeed folds into approximately the designed three-dimensional structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hecht, M H -- Richardson, J S -- Richardson, D C -- Ogden, R C -- New York, N.Y. -- Science. 1990 Aug 24;249(4971):884-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2392678" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acid Sequence ; Base Sequence ; DNA/genetics ; *Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Denaturation ; *Proteins ; *Recombinant Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-07-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, D C -- He, X M -- New York, N.Y. -- Science. 1990 Jul 20;249(4966):302-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Space Science Laboratory, NASA Marshall Space Flight Center, Huntsville, AL 35812.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2374930" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; Models, Molecular ; Protein Conformation ; *Serum Albumin ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-05-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levitzki, A -- New York, N.Y. -- Science. 1990 May 18;248(4957):794.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Hebrew University of Jerusalem, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2188357" target="_blank"〉PubMed〈/a〉
    Keywords: Guanine Nucleotides/*metabolism ; Guanosine Diphosphate/*metabolism ; Guanosine Triphosphate/*metabolism ; Mutation ; Oncogene Protein p21(ras)/genetics/*metabolism ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins p21(ras) ; Saccharomyces cerevisiae/genetics/metabolism ; Schizosaccharomyces/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-08-17
    Description: A class of transcriptional regulator proteins bind to DNA at dyad-symmetric sites through a motif consisting of (i) a "leucine zipper" sequence that associates into noncovalent, parallel, alpha-helical dimers and (ii) a covalently connected basic region necessary for binding DNA. The basic regions are predicted to be disordered in the absence of DNA and to form alpha helices when bound to DNA. These helices bind in the major groove forming multiple hydrogen-bonded and van der Waals contacts with the nucleotide bases. To test this model, two peptides were designed that were identical to natural leucine zipper proteins only at positions hypothesized to be critical for dimerization and DNA recognition. The peptides form dimers that bind specifically to DNA with their basic regions in alpha-helical conformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Neil, K T -- Hoess, R H -- DeGrado, W F -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):774-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Central Research and Development Department, E.I. du Pont de Nemours & Co., Wilmington, DE 19880-0328.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2389143" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Chemistry, Physical ; Circular Dichroism ; Computer Simulation ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Hydrogen Bonding ; *Leucine ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Physicochemical Phenomena ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-10-26
    Description: Expression of the L-arabinose BAD operon in Escherichia coli is regulated by AraC protein which acts both positively in the presence of arabinose to induce transcription and negatively in the absence of arabinose to repress transcription. The repression of the araBAD promoter is mediated by DNA looping between AraC protein bound at two sites near the promoter separated by 210 base pairs, araI and araO2. In vivo and in vitro experiments presented here show that an AraC dimer, with binding to half of araI and to araO2, maintains the repressed state of the operon. The addition of arabinose, which induces the operon, breaks the loop, and shifts the interactions from the distal araO2 site to the previously unoccupied half of the araI site. The conversion between the two states does not require additional binding of AraC protein and appears to be driven largely by properties of the protein rather than being specified by the slightly different DNA sequences of the binding sites. Slight reorientation of the subunits of AraC could specify looping or unlooping by the protein. Such a mechanism could account for regulation of DNA looping in other systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lobell, R B -- Schleif, R F -- GM18277/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Oct 26;250(4980):528-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2237403" target="_blank"〉PubMed〈/a〉
    Keywords: AraC Transcription Factor ; Arabinose/genetics/pharmacology ; *Bacterial Proteins ; Binding Sites ; *DNA, Bacterial/genetics/metabolism ; DNA, Superhelical/metabolism ; Escherichia coli/*genetics ; Escherichia coli Proteins ; Fucose/pharmacology ; Gene Expression Regulation, Bacterial/*drug effects ; Guanine/metabolism ; Macromolecular Substances ; Methylation ; Mutation ; Nucleic Acid Conformation/*drug effects ; Operon ; Protein Conformation/drug effects ; Repressor Proteins/metabolism/*pharmacology ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1990-09-21
    Description: Thyrotropin (TSH), luteinizing hormone (LH), and chorionic gonadotropin (CG) are structurally related glycoprotein hormones, which bind to receptors that share a high degree of sequence similarity. However, comparison of the primary amino acid sequences of the TSH and LH-CG receptors reveals two unique insertions of 8 and 50 amino acids in the extracellular domain of the TSH receptor. The functional significance of these insertions were determined by site-directed mutagenesis. Deletion of the 50-amino acid tract (residues 317 to 366) had no effect on TSH binding or on TSH and thyroid-stimulating immunoglobulin (TSI) biological activities. In contrast, either deletion or substitution of the eight-amino acid region (residues 38 to 45) abolished these activities. This eight-amino acid tract near the amino terminus of the TSH receptor appears to be an important site of interaction for both TSH and TSI.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wadsworth, H L -- Chazenbalk, G D -- Nagayama, Y -- Russo, D -- Rapoport, B -- DK-19289/DK/NIDDK NIH HHS/ -- DK-36182/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 21;249(4975):1423-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Veterans Administration Medical Center, San Francisco, CA 94121.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2169649" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cell Line ; Chromosome Deletion ; Clone Cells ; Cyclic AMP/metabolism ; Humans ; Molecular Sequence Data ; Mutation ; Oligonucleotide Probes ; Receptors, Thyrotropin/*genetics/metabolism ; Thyrotropin/*metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-09-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abelson, P H -- New York, N.Y. -- Science. 1990 Sep 21;249(4975):1357.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2402628" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carcinogenicity Tests/*methods ; *Carcinogens ; Mutation ; *Rodentia
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-04-20
    Description: Cytotoxic T lymphocytes (CTLs) recognize class I major histocompatibility complex (MHC) molecules associated with antigenic peptides derived from endogenously synthesized proteins. Binding to such peptides is a requirement for class I assembly in the endoplasmic reticulum (ER). A mutant human cell line, T2, assembles and transports to its surface some, but not all, class I MHC molecules. The class I molecules expressed on the surface of T2 do not present peptides derived from cytosolic antigens, although they can present exogenously added peptides to CTL. The transported class I molecules may interact weakly with an unknown retaining factor in the ER such that they can assemble despite the relative shortage of peptides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hosken, N A -- Bevan, M J -- AI-19335/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Apr 20;248(4953):367-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2326647" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/*immunology ; Antigens/immunology ; Antigens, Viral/immunology ; B-Lymphocytes/immunology ; Capsid/immunology ; Cell Line ; Endoplasmic Reticulum/immunology ; Gene Expression ; H-2 Antigens/genetics/immunology ; HLA Antigens/genetics ; Histocompatibility Antigens Class I/*immunology ; Histocompatibility Antigens Class II/genetics ; Humans ; Mice ; Mutation ; Ovalbumin/immunology ; Peptides/immunology ; T-Lymphocytes, Cytotoxic/immunology ; Transfection ; Tumor Cells, Cultured ; Viral Core Proteins/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1990-12-07
    Description: A genetic system was developed in Escherichia coli to study leucine zippers with the amino-terminal domain of bacteriophage lambda repressor as a reporter for dimerization. This system was used to analyze the importance of the amino acid side chains at eight positions that form the hydrophobic interface of the leucine zipper dimer from the yeast transcriptional activator, GCN4. When single amino acid substitutions were analyzed, most functional variants contained hydrophobic residues at the dimer interface, while most nonfunctional sequence variants contained strongly polar or helix-breaking residues. In multiple randomization experiments, however, many combinations of hydrophobic residues were found to be nonfunctional, and leucines in the heptad repeat were shown to have a special function in leucine zipper dimerization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, J C -- O'Shea, E K -- Kim, P S -- Sauer, R T -- AI15706/AI/NIAID NIH HHS/ -- GM11117/GM/NIGMS NIH HHS/ -- GM44162/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 7;250(4986):1400-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2147779" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriophage lambda/*genetics ; DNA-Binding Proteins/*genetics ; Escherichia coli/*genetics ; Fungal Proteins/*genetics ; Genetic Variation ; Leucine Zippers/*genetics ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Phenotype ; Protein Conformation ; *Protein Kinases ; Random Allocation ; Recombinant Fusion Proteins/metabolism ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-10-26
    Description: The yeast protein RAP1, initially described as a transcriptional regulator, binds in vitro to sequences found in a number of seemingly unrelated genomic loci. These include the silencers at the transcriptionally repressed mating-type genes, the promoters of many genes important for cell growth, and the poly[(cytosine)1-3 adenine] [poly(C1-3A)] repeats of telomeres. Because RAP1 binds in vitro to the poly(C1-3A) repeats of telomeres, it has been suggested that RAP1 may be involved in telomere function in vivo. In order to test this hypothesis, the telomere tract lengths of yeast strains that contained conditionally lethal (ts) rap1 mutations were analyzed. Several rap1ts alleles reduced telomere length in a temperature-dependent manner. In addition, plasmids that contain small, synthetic telomeres with intact or mutant RAP1 binding sites were tested for their ability to function as substrates for poly(C1-3A) addition in vivo. Mutations in the RAP1 binding sites reduced the efficiency of the addition reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lustig, A J -- Kurtz, S -- Shore, D -- GM 40094/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Oct 26;250(4980):549-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2237406" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Chromosomes, Fungal/metabolism/*ultrastructure ; DNA-Binding Proteins/metabolism ; Fungal Proteins/genetics/*metabolism ; *Genes, Fungal ; *Genes, Mating Type, Fungal ; Molecular Sequence Data ; Mutation ; Plasmids ; Poly A/metabolism ; Poly C/metabolism ; Repetitive Sequences, Nucleic Acid ; Saccharomyces cerevisiae/*genetics ; Temperature ; *Transcription Factors ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-09-28
    Description: To understand why proteins adopt particular three-dimensional structures, it is important to elucidate the hierarchy of interactions that stabilize the native state. Proteins in partly folded states can be used to dissect protein organizational hierarchies. A partly folded apomyoglobin intermediate has now been characterized structurally by trapping slowly exchanging peptide NH protons and analyzing them by two-dimensional 1H-NMR (nuclear magnetic resonance). Protons in the A, G, and H helix regions are protected from exchange, while protons in the B and E helix regions exchange freely. On the basis of these results and the three-dimensional structure of native myoglobin, a structural model is presented for the partly folded intermediate in which a compact subdomain retains structure while the remainder of the protein is essentially unfolded.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughson, F M -- Wright, P E -- Baldwin, R L -- DK34909/DK/NIDDK NIH HHS/ -- GM19988/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 28;249(4976):1544-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Beckman Center, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2218495" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Apoproteins/chemistry/*metabolism ; Hydrogen-Ion Concentration ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Myoglobin/chemistry/*metabolism ; Protein Conformation ; Spectrophotometry, Ultraviolet
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1990-08-31
    Description: The isocitrate dehydrogenase of Escherichia coli is an example of a ubiquitous class of enzymes that are regulated by covalent modification. In the three-dimensional structure of the enzyme-substrate complex, isocitrate forms a hydrogen bond with Ser113, the site of regulatory phosphorylation. The structures of Asp113 and Glu113 mutants, which mimic the inactivation of the enzyme by phosphorylation, show minimal conformational changes from wild type, as in the phosphorylated enzyme. Calculations based on observed structures suggest that the change in electrostatic potential when a negative charge is introduced either by phosporylation or site-directed mutagenesis is sufficient to inactivate the enzyme. Thus, direct interaction at a ligand binding site is an alternative mechanism to induced conformational changes from an allosteric site in the regulation of protein activity by phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hurley, J H -- Dean, A M -- Sohl, J L -- Koshland, D E Jr -- Stroud, R M -- GM 24485/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 31;249(4972):1012-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2204109" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Escherichia coli/*enzymology/genetics ; Homeostasis ; Isocitrate Dehydrogenase/genetics/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1990-08-03
    Description: Comparison of the 2.4 angstrom resolution crystal structures of dimeric clam hemoglobin in the deoxygenated and carbon-monoxide liganded states shows how radically different the structural basis for cooperative oxygen binding is from that operative in mammalian hemoglobins. Heme groups are in direct communication across a novel subunit interface formed by the E and F helices. The conformational changes at this interface that accompany ligand binding are more dramatic at a tertiary level but more subtle at a quaternary level than those in mammalian hemoglobins. These findings suggest a cooperative mechanism that links ligation at one subunit with potentiation of affinity at the second subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Royer, W E Jr -- Hendrickson, W A -- Chiancone, E -- New York, N.Y. -- Science. 1990 Aug 3;249(4968):518-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2382132" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carboxyhemoglobin/metabolism ; Hemoglobins/*metabolism ; Ligands ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Mollusca ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1990-07-20
    Description: The crystallographic structure of a recombinant hirudin-thrombin complex has been solved at 2.3 angstrom (A) resolution. Hirudin consists of an NH2-terminal globular domain and a long (39 A) COOH-terminal extended domain. Residues Ile1 to Tyr3 of hirudin form a parallel beta-strand with Ser214 to Glu217 of thrombin with the nitrogen atom of Ile1 making a hydrogen bond with Ser195 O gamma atom of the catalytic site, but the specificity pocket of thrombin is not involved in the interaction. The COOH-terminal segment makes numerous electrostatic interactions with an anion-binding exosite of thrombin, whereas the last five residues are in a helical loop that forms many hydrophobic contacts. In all, 27 of the 65 residues of hirudin have contacts less than 4.0 A with thrombin (10 ion pairs and 23 hydrogen bonds). Such abundant interactions may account for the high affinity and specificity of hirudin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rydel, T J -- Ravichandran, K G -- Tulinsky, A -- Bode, W -- Huber, R -- Roitsch, C -- Fenton, J W 2nd -- HL13160/HL/NHLBI NIH HHS/ -- HL43229/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 20;249(4966):277-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Michigan State University, East Lansing 48824.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2374926" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Hirudins/*metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Recombinant Proteins/metabolism ; Thrombin/*metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-08-10
    Description: A metalloantibody has been constructed with a coordination site for metals in the antigen binding pocket. The Zn(II) binding site from carbonic anhydrase B was used as a model. Three histidine residues have been placed in the light chain complementarity determining regions of a single chain antibody molecule. In contrast to the native protein, the mutant displayed metal-dependent fluorescence-quenching behavior. This response was interpreted as evidence for metal binding in the three-histidine site with relative affinities in the order Cu(II) greater than Zn(II) greater than Cd(II). The presence of metal cofactors in immunoglobulins should facilitate antibody catalysis of redox and hydrolytic reactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iverson, B L -- Iverson, S A -- Roberts, V A -- Getzoff, E D -- Tainer, J A -- Benkovic, S J -- Lerner, R A -- F32GM-1204702/GM/NIGMS NIH HHS/ -- IGM 37684/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):659-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2116666" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Binding Sites, Antibody ; Cadmium ; Carbonic Anhydrases/*immunology ; Copper ; Fluoresceins ; Immunoglobulin Heavy Chains ; Immunoglobulin Light Chains ; Ligands ; *Metals ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Spectrometry, Fluorescence ; Zinc
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1990-03-02
    Description: Cold-sensitive mutations in the SPB genes (spb1-spb7) of Saccharomyces cerevisiae suppress the inhibition of translation initiation resulting from deletion of the poly(A)-binding protein gene (PAB1). The SPB4 protein belongs to a family of adenosine triphosphate (ATP)-dependent RNA helicases. The aberrant production of 25S ribosomal RNA (rRNA) occurring in spb4-1 mutants or the deletion of SPB2 (RPL46) permits the deletion of PAB1. These data suggest that mutations affecting different steps of 60S subunit formation can allow PAB-independent translation, and they indicate that further characterization of the spb mutations could lend insight into the biogenesis of the ribosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sachs, A B -- Davis, R W -- R37 GM 21891/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 2;247(4946):1077-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Stanford Medical Center, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2408148" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Carrier Proteins/genetics/metabolism ; DEAD-box RNA Helicases ; Molecular Sequence Data ; Mutation ; Poly(A)-Binding Proteins ; *Protein Biosynthesis ; RNA Nucleotidyltransferases/genetics/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Fungal/genetics/metabolism ; RNA, Ribosomal/genetics/*metabolism ; Ribosomal Proteins/genetics/*metabolism ; Ribosomes/*metabolism ; Saccharomyces cerevisiae/enzymology/*genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1990-02-09
    Description: Gene mutation in vivo in human T lymphocytes appears to occur preferentially in dividing cells. Individuals with multiple sclerosis (MS) are assumed to have one or more populations of diving T cells that are being stimulated by autoantigens. Mutant T cell clones from MS patients were isolated and tested for reactivity to myelin basic protein, an antigen that is thought to participate in the induction of the disease. The hypoxanthine guanine phosphoribosyltransferase (hprt) clonal assay was used to determine mutant frequency values in MS patients with chronic progressive disease. Eleven of 258 thioguanine-resistant (hprt-) T cell clones from five of the six MS patients who were tested proliferated in response to human myelin basic protein without prior in vitro exposure to this antigen. No wild-type clones from these patients, nor any hprt- or wild-type clones from three healthy individuals responded to myelin basic protein. Thus, T cell clones that react with myelin basic protein can be isolated from the peripheral blood of MS patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allegretta, M -- Nicklas, J A -- Sriram, S -- Albertini, R J -- CA30688-07/CA/NCI NIH HHS/ -- NS00849/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 9;247(4943):718-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genetics Laboratory, University of Vermont, Burlington 05401.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1689076" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Autoantigens/immunology ; Cell Division ; Clone Cells/immunology ; Female ; Humans ; Hypoxanthine Phosphoribosyltransferase/genetics ; Male ; Middle Aged ; Multiple Sclerosis/genetics/*immunology ; Mutation ; Myelin Basic Protein/*immunology ; T-Lymphocytes/drug effects/*immunology ; Thioguanine/pharmacology ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-11-09
    Description: Deletion of chromosome 11p13 in humans produces the WAGR syndrome, consisting of aniridia (an absence or malformation of the iris), Wilms tumor (nephroblastoma), genitourinary malformations, and mental retardation. An interspecies backcross between Mus musculus/domesticus and Mus spretus was made in order to map the homologous chromosomal region in the mouse genome and to define an animal model of this syndrome. Nine evolutionarily conserved DNA clones from proximal human 11p were localized on mouse chromosome 2 near Small-eyes (Sey), a semidominant mutation that is phenotypically similar to aniridia. Analysis of Dickie's Small-eye (SeyDey), a poorly viable allele that has pleiotropic effects, revealed the deletion of three clones, f3, f8, and k13, which encompass the aniridia (AN2) and Wilms tumor susceptibility genes in man. Unlike their human counterparts, SeyDey/+ mice do not develop nephroblastomas. These findings suggest that the Small-eye defect is genetically equivalent to human aniridia, but that loss of the murine homolog of the Wilms tumor gene is not sufficient for tumor initiation. A comparison among Sey alleles suggests that the AN2 gene product is required for induction of the lens and nasal placodes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Glaser, T -- Lane, J -- Housman, D -- 2 T32 GMO7753-11/GM/NIGMS NIH HHS/ -- GM27882/GM/NIGMS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 9;250(4982):823-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2173141" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aniridia/*genetics ; Blotting, Southern ; Chromosome Deletion ; Chromosome Mapping ; DNA/analysis ; *Disease Models, Animal ; Eye/embryology/pathology ; Female ; Genes, Wilms Tumor/*genetics ; Genetic Markers ; Kidney Neoplasms/*genetics ; Male ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Muridae ; Mutation ; Phenotype ; Polymorphism, Genetic ; Syndrome ; Wilms Tumor/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-06-01
    Description: A heat shock protein gene, HSP104, was isolated from Saccharomyces cerevisiae and a deletion mutation was introduced into yeast cells. Mutant cells grew at the same rate as wild-type cells and died at the same rate when exposed directly to high temperatures. However, when given a mild pre-heat treatment, the mutant cells did not acquire tolerance to heat, as did wild-type cells. Transformation with the wild-type gene rescued the defect of mutant cells. The results demonstrate that a particular heat shock protein plays a critical role in cell survival at extreme temperatures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, Y -- Lindquist, S L -- GM 35483/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 1;248(4959):1112-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2188365" target="_blank"〉PubMed〈/a〉
    Keywords: Cloning, Molecular ; Fungal Proteins/biosynthesis/*genetics ; Genes, Fungal ; Heat-Shock Proteins/biosynthesis/genetics/*physiology ; *Hot Temperature ; Mutation ; Restriction Mapping ; Saccharomyces cerevisiae/genetics/growth & development/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-02-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alper, J -- New York, N.Y. -- Science. 1990 Feb 16;247(4944):804-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2154848" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/drug therapy ; *Antiviral Agents/therapeutic use ; Capsid/ultrastructure ; Common Cold/*drug therapy ; Drug Design ; Humans ; Models, Molecular ; Protein Conformation ; Rhinovirus/ultrastructure ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1990-06-01
    Description: Transmembrane proteins serve important biological functions, yet precise information on their secondary and tertiary structure is very limited. The boundaries and structures of membrane-embedded domains in integral membrane proteins can be determined by a method based on a combination of site-specific mutagenesis and nitroxide spin labeling. The application to one polypeptide segment in bacteriorhodopsin, a transmembrane chromoprotein that functions as a light-driven proton pump is described. Single cysteine residues were introduced at 18 consecutive positions (residues 125 to 142). Each mutant was reacted with a specific spin label and reconstituted into vesicles that were shown to be functional. The relative collision frequency of each spin label with freely diffusing oxygen and membrane-impermeant chromium oxalate was estimated with power saturation EPR (electron paramagnetic resonance) spectroscopy. The results indicate that residues 129 to 131 form a short water-exposed loop, while residues 132 to 142 are membrane-embedded. The oxygen accessibility for positions 131 to 138 varies with a periodicity of 3.6 residues, thereby providing a striking demonstration of an alpha helix. The orientation of this helical segment with respect to the remainder of the protein was determined.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altenbach, C -- Marti, T -- Khorana, H G -- Hubbell, W L -- AI 11479/AI/NIAID NIH HHS/ -- EY05216/EY/NEI NIH HHS/ -- GM28289/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 1;248(4959):1088-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jules Stein Eye Institute, University of California, Los Angeles 90024-7008.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2160734" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Bacteriorhodopsins/genetics ; Cysteine/genetics ; Electron Spin Resonance Spectroscopy ; *Membrane Proteins/genetics ; Molecular Sequence Data ; Mutation ; Oxalates ; Oxalic Acid ; Oxygen ; Protein Conformation ; Spin Labels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-02-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marshall, E -- New York, N.Y. -- Science. 1990 Feb 16;247(4944):798-801.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2369435" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Anthropology ; Carbon Radioisotopes ; DNA, Mitochondrial/genetics ; Hominidae/*genetics ; Humans ; Israel ; Mutation ; *Paleontology ; South Africa
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1990-02-23
    Description: Identification of a mutant epidermal growth factor (EGF) receptor that does not undergo downregulation has provided a genetic probe to investigate the role of internalization in ligand-induced mitogenesis. Contact-inhibited cells expressing this internalization-defective receptor exhibited a normal mitogenic response at significantly lower ligand concentrations than did cells expressing wild-type receptors. A transformed phenotype and anchorage-independent growth were observed at ligand concentrations that failed to elicit these responses in cells expressing wild-type receptors. These findings imply that activation of the protein tyrosine kinase activity at the cell membrane is sufficient for the growth-enhancing effects of EGF. Thus, downregulation can serve as an attenuation mechanism, without which transformation ensues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wells, A -- Welsh, J B -- Lazar, C S -- Wiley, H S -- Gill, G N -- Rosenfeld, M G -- DDK 13149/DK/NIDDK NIH HHS/ -- DDK 18477/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 23;247(4945):962-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of California-San Diego, La Jolla 92093.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2305263" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Division ; Cell Line ; Down-Regulation ; *Endocytosis ; Enzyme Activation ; Epidermal Growth Factor/pharmacology ; Genetic Vectors ; Moloney murine leukemia virus/genetics ; Mutation ; Phenotype ; Protein-Tyrosine Kinases/metabolism ; Receptor, Epidermal Growth Factor/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1991-05-03
    Description: Genetic factors contribute to heart disease. In this study, linkage analyses have been performed in a family that is predisposed to sudden death from cardiac arrhythmias, the long QT syndrome (LQT). A DNA marker at the Harvey ras-1 locus (H-ras-1) was linked to LQT with a logarithm of the likelihood ratio for linkage (lod score) of 16.44 at theta = 0, which confirms the genetic basis of this trait and localizes this gene to the short arm of chromosome 11. As no recombination was observed between LQT and H-ras-1, and there is a physiological rationale for its involvement in this disease, ras becomes a candidate for the disease locus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keating, M -- Atkinson, D -- Dunn, C -- Timothy, K -- Vincent, G M -- Leppert, M -- New York, N.Y. -- Science. 1991 May 3;252(5006):704-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City 84132.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1673802" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosome Mapping ; Chromosomes, Human, Pair 11 ; Electrocardiography ; *Genes, ras ; Humans ; *Lod Score ; Long QT Syndrome/*genetics/physiopathology ; Mutation ; Pedigree ; Polymorphism, Restriction Fragment Length
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1991-07-26
    Description: The structure of a 20-amino acid peptide inhibitor bound to the catalytic subunit of cyclic AMP-dependent protein kinase, and its interactions with the enzyme, are described. The x-ray crystal structure of the complex is the basis of the analysis. The peptide inhibitor, derived from a naturally occurring heat-stable protein kinase inhibitor, contains an amphipathic helix that is followed by a turn and an extended conformation. The extended region occupies the cleft between the two lobes of the enzyme and contains a five-residue consensus recognition sequence common to all substrates and peptide inhibitors of the catalytic subunit. The helical portion of the peptide binds to a hydrophobic groove and conveys high affinity binding. Loops from both domains converge at the active site and contribute to a network of conserved residues at the sites of magnesium adenosine triphosphate binding and catalysis. Amino acids associated with peptide recognition, nonconserved, extend over a large surface area.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knighton, D R -- Zheng, J H -- Ten Eyck, L F -- Xuong, N H -- Taylor, S S -- Sowadski, J M -- RR01644/RR/NCRR NIH HHS/ -- T32CA09523/CA/NCI NIH HHS/ -- T32DK07233/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Jul 26;253(5018):414-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, San Diego, La Jolla 92093-0654.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1862343" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Carrier Proteins/*chemistry/metabolism ; Computer Simulation ; Enzyme Inhibitors/*chemistry ; *Intracellular Signaling Peptides and Proteins ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Kinases/*chemistry/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1991-03-22
    Description: Serine 130 is one of seven residues that form a total of seven hydrogen bonds with the sulfate completely sequestered deep in the cleft between the two lobes of the bilobate sulfate-binding protein from Salmonella typhimurium. This residue has been replaced with Cys, Ala, and Gly by site-directed mutagenesis in an Escherichia coli expression system. Replacement with the isosteric Cys caused a 3200-fold decrease in the sulfate-binding activity relative to the wild-type activity, whereas replacement with Ala and Gly resulted in only 100- and 15-fold decreases, respectively. The effect of the Cys substitution is attributed largely to steric effect, whereas the Gly substitution more nearly reflects the loss of one hydrogen bond to the bound sulfate with a strength of only 1.6 kilocalories per mole.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, J J -- Quiocho, F A -- New York, N.Y. -- Science. 1991 Mar 22;251(5000):1479-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1900953" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Proteins ; Binding Sites ; Carrier Proteins/chemistry/*genetics/metabolism ; Cysteine ; DNA Mutational Analysis ; *Escherichia coli Proteins ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Models, Molecular ; *Periplasmic Binding Proteins ; Salmonella typhimurium ; Serine ; Structure-Activity Relationship ; Sulfates/*chemistry ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-07-12
    Description: The most frequently occurring RNA hairpins in 16S and 23S ribosomal RNA contain a tetranucleotide loop that has a GNRA consensus sequence. The solution structures of the GCAA and GAAA hairpins have been determined by nuclear magnetic resonance spectroscopy. Both loops contain an unusual G-A base pair between the first and last residue in the loop, a hydrogen bond between a G base and a phosphate, extensive base stacking, and a hydrogen bond between a sugar 2'-end OH and a base. These interactions explain the high stability of these hairpins and the sequence requirements for the variant and invariant nucleotides in the GNRA tetranucleotide loop family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heus, H A -- Pardi, A -- AI 27026/AI/NIAID NIH HHS/ -- AI 30726/AI/NIAID NIH HHS/ -- RR03283/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1991 Jul 12;253(5016):191-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1712983" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Computer Graphics ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligoribonucleotides/chemistry ; RNA/chemistry/*ultrastructure ; Structure-Activity Relationship ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1991-12-09
    Description: The three-dimensional structure of an active, disulfide cross-linked dimer of the ligand-binding domain of the Salmonella typhimurium aspartate receptor and that of an aspartate complex have been determined by x-ray crystallographic methods at 2.4 and 2.0 angstrom (A) resolution, respectively. A single subunit is a four-alpha-helix bundle with two long amino-terminal and carboxyl-terminal helices and two shorter helices that form a cylinder 20 A in diameter and more than 70 A long. The two subunits in the disulfide-bonded dimer are related by a crystallographic twofold axis in the apo structure, but by a noncrystallographic twofold axis in the aspartate complex structure. The latter structure reveals that the ligand binding site is located more than 60 A from the presumed membrane surface and is at the interface of the two subunits. Aspartate binds between two alpha helices from one subunit and one alpha helix from the other in a highly charged pocket formed by three arginines. The comparison of the apo and aspartate complex structures shows only small structural changes in the individual subunits, except for one loop region that is disordered, but the subunits appear to change orientation relative to each other. The structures of the two forms of this protein provide a step toward understanding the mechanisms of transmembrane signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Milburn, M V -- Prive, G G -- Milligan, D L -- Scott, W G -- Yeh, J -- Jancarik, J -- Koshland, D E Jr -- Kim, S H -- AI 30725/AI/NIAID NIH HHS/ -- DK09765/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 29;254(5036):1342-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1660187" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aspartic Acid/metabolism ; Binding Sites ; Disulfides/analysis ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; *Receptors, Amino Acid ; Receptors, Cell Surface/*chemistry/metabolism ; Salmonella typhimurium/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1991-03-22
    Description: Defensins (molecular weight 3500 to 4000) act in the mammalian immune response by permeabilizing the plasma membranes of a broad spectrum of target organisms, including bacteria, fungi, and enveloped viruses. The high-resolution crystal structure of defensin HNP-3 (1.9 angstrom resolution, R factor 0.19) reveals a dimeric beta sheet that has an architecture very different from other lytic peptides. The dimeric assembly suggests mechanisms by which defensins might bind to and permeabilize the lipid bilayer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hill, C P -- Yee, J -- Selsted, M E -- Eisenberg, D -- New York, N.Y. -- Science. 1991 Mar 22;251(5000):1481-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eisenberg, Molecular Biology Institute, Los Angeles, CA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2006422" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blood Proteins/chemistry/*ultrastructure ; Cell Membrane Permeability ; Crystallography ; Defensins ; Guinea Pigs ; Humans ; Macromolecular Substances ; Membrane Proteins/chemistry/ultrastructure ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Protein Conformation ; Rabbits ; Rats ; Structure-Activity Relationship ; X-Ray Diffraction ; *alpha-Defensins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kraulis, P J -- New York, N.Y. -- Science. 1991 Oct 25;254(5031):581-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1658931" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites, Antibody ; Immunoglobulin G ; Models, Molecular ; Molecular Sequence Data ; Nerve Tissue Proteins/*chemistry/genetics/immunology ; Protein Conformation ; Sequence Homology, Nucleic Acid ; Ubiquitins/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1991-02-08
    Description: Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis. In order to evaluate its function, CFTR was expressed in HeLa, Chinese hamster ovary (CHO), and NIH 3T3 fibroblast cells, and anion permeability was assessed with a fluorescence microscopic assay and the whole-cell patch-clamp technique. Adenosine 3',5'-monophosphate (cAMP) increased anion permeability and chloride currents in cells expressing CFTR, but not in cells expressing a mutant CFTR (delta F508) or in nontransfected cells. The simplest interpretation of these observations is that CFTR is itself a cAMP-activated chloride channel. The alternative interpretation, that CFTR directly or indirectly regulates chloride channels, requires that these cells have endogenous cryptic, chloride channels that are stimulated by cAMP only in the presence of CFTR.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anderson, M P -- Rich, D P -- Gregory, R J -- Smith, A E -- Welsh, M J -- New York, N.Y. -- Science. 1991 Feb 8;251(4994):679-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1704151" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chloride Channels ; Chlorides/*metabolism ; Cricetinae ; Cyclic AMP/*physiology ; Cystic Fibrosis Transmembrane Conductance Regulator ; Humans ; Membrane Proteins/*metabolism/*physiology ; Mice ; Mutation ; Recombinant Proteins ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1991-07-05
    Description: Amino acid substitutions at a site in the center of the bacteriophage protein P22 tailspike polypeptide chain suppress temperature-sensitive folding mutations at many sites throughout the chain. Characterization of the intracellular folding and chain assembly process reveals that the suppressors act in the folding pathway, inhibiting the aggregation of an early folding intermediate into the kinetically trapped inclusion body state. The suppressors alone increase the folding efficiency of the otherwise wild-type polypeptide chain without altering the stability or activity of the native state. These amino acid substitutions identify an unexpected aspect of the protein folding grammar--sequences within the chain that carry information inhibiting unproductive off-pathway conformations. Such mutations may serve to increase the recovery of protein products of cloned genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mitraki, A -- Fane, B -- Haase-Pettingell, C -- Sturtevant, J -- King, J -- GMS17,980/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Jul 5;253(5015):54-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1648264" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Coliphages ; DNA Mutational Analysis ; Electrophoresis, Polyacrylamide Gel ; Gene Expression Regulation ; Inclusion Bodies/*chemistry ; Molecular Sequence Data ; Mutation ; *Protein Conformation ; Viral Proteins/*chemistry ; Viral Tail Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-06-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moffat, A S -- New York, N.Y. -- Science. 1991 Jun 7;252(5011):1374-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2047850" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA/*chemistry ; DNA Replication ; Genes, myc ; Models, Molecular ; Molecular Sequence Data ; Transcription, Genetic/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arnold, F H -- Haymore, B L -- New York, N.Y. -- Science. 1991 Jun 28;252(5014):1796-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1648261" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carrier Proteins/*chemical synthesis/chemistry/isolation & purification ; Cytochrome c Group/chemistry ; Histidine ; Ligands ; Metals/*metabolism ; Models, Molecular ; Protein Conformation ; *Protein Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1991-10-11
    Description: Somatic and germline cells interact during oogenesis to establish the pattern axes of the Drosophila eggshell and embryo. The role of the oocyte nucleus in pattern formation was tested with the use of laser ablation. Ablation in stage 6 to 9 egg chambers caused partial or complete ventralization of the eggshell, phenotypes similar to those of eggs produced by gurken or torpedo females. Accumulation of vasa protein at the posterior pole of treated oocytes was also disrupted. Thus the oocyte nucleus is required as late as stage 9 for dorsoventral patterning within the follicle cells and for polar plasm assembly in the oocyte.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Montell, D J -- Keshishian, H -- Spradling, A C -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 1991 Oct 11;254(5029):290-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Carnegie Institution of Washington, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925585" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Nucleus/*physiology ; Cell Polarity/physiology ; Drosophila/*embryology ; Egg Shell ; Genes ; Laser Therapy ; Microsurgery ; Morphogenesis ; Mutation ; Oocytes/*physiology ; Oogenesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoffman, M -- New York, N.Y. -- Science. 1991 Jul 26;253(5018):383.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1862341" target="_blank"〉PubMed〈/a〉
    Keywords: Carrier Proteins/chemistry/metabolism ; Enzyme Inhibitors/chemistry ; *Intracellular Signaling Peptides and Proteins ; Models, Molecular ; Protein Conformation ; Protein Kinases/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1991-03-22
    Description: The three-dimensional atomic structure of a single-stranded DNA virus has been determined. Infectious virions of canine parvovirus contain 60 protein subunits that are predominantly VP-2. The central structural motif of VP-2 has the same topology (an eight-stranded antiparallel beta barrel) as has been found in many other icosahedral viruses but represents only about one-third of the capsid protein. There is a 22 angstrom (A) long protrusion on the threefold axes, a 15 A deep canyon circulating about each of the five cylindrical structures at the fivefold axes, and a 15 A deep depression at the twofold axes. By analogy with rhinoviruses, the canyon may be the site of receptor attachment. Residues related to the antigenic properties of the virus are found on the threefold protrusions. Some of the amino termini of VP-2 run to the exterior in full but not empty virions, which is consistent with the observation that some VP-2 polypeptides in full particles can be cleaved by trypsin. Eleven nucleotides are seen in each of 60 symmetry-related pockets on the interior surface of the capsid and together account for 13 percent of the genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsao, J -- Chapman, M S -- Agbandje, M -- Keller, W -- Smith, K -- Wu, H -- Luo, M -- Smith, T J -- Rossmann, M G -- Compans, R W -- New York, N.Y. -- Science. 1991 Mar 22;251(5000):1456-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2006420" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, Viral/chemistry ; Capsid/ultrastructure ; Crystallography ; DNA, Viral/ultrastructure ; Hemagglutinins, Viral/chemistry ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Parvoviridae/*ultrastructure ; Virion/ultrastructure ; Virus Replication ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-01-04
    Description: Virion protein 16 (VP16) of herpes simplex virus type 1 contains an acidic transcriptional activation domain. Missense mutations within this domain have provided insights into the structural elements critical for its function. Net negative charge contributed to, but was not sufficient for, transcriptional activation by VP16. A putative amphipathic alpha helix did not appear to be an important structural component of the activation domain. A phenylalanine residue at position 442 was exquisitely sensitive to mutation. Transcriptional activators of several classes contain hydrophobic amino acids arranged in patterns resembling that of VP16. Therefore, the mechanism of transcriptional activation by VP16 and other proteins may involve both ionic and specific hydrophobic interactions with target molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cress, W D -- Triezenberg, S J -- AI 27323/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1991 Jan 4;251(4989):87-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Michigan State University, East Lansing 48824-1319.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1846049" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Immediate-Early Proteins ; Molecular Sequence Data ; Mutation ; Protein Conformation ; *Simplexvirus ; Structure-Activity Relationship ; Transcription Factors/*chemistry/genetics/pharmacology ; Transcription, Genetic/*drug effects ; Transfection ; Viral Proteins/*genetics ; Virion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1991-05-31
    Description: Filamentous bacteriophage Pf1 assembles by a membrane-mediated process during which the viral DNA is secreted through the membrane while being encapsulated by the major coat protein. Neutron diffraction studies showed that in the virus most of the coat protein consists of two alpha-helical segments arranged end-to-end with an intervening mobile surface loop. Nuclear magnetic resonance studies of the coat protein in the membrane-bound form have shown that the secondary structure is essentially identical to that in the intact virus. A comparison indicates that during membrane-mediated viral assembly, while the secondary structure of the coat protein is largely conserved, its tertiary structure changes substantially.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nambudripad, R -- Stark, W -- Opella, S J -- Makowski, L -- New York, N.Y. -- Science. 1991 May 31;252(5010):1305-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Boston University, MA 02215.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925543" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophages/chemistry ; Capsid/*chemistry/metabolism ; *Capsid Proteins ; Cell Membrane/*metabolism ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Structure ; Neutrons ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1991-06-28
    Description: The beta-tropomyosin gene in chicken contains two mutually exclusive exons (exons 6A and 6B) which are used by the splicing apparatus in myogenic cells, respectively, before (myoblast stage) and after (myotube stage) differentiation. The myoblast splicing pattern is shown to depend on multiple sequence elements that are located in the upstream intron and in the exon 6B and that exert a negative control over exon 6B splicing. This regulation of splicing is due, at least in part, to a secondary structure of the primary transcript, which limits in vivo the accessibility of exon 6B in myoblasts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Libri, D -- Piseri, A -- Fiszman, M Y -- New York, N.Y. -- Science. 1991 Jun 28;252(5014):1842-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Pasteur, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2063196" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chickens ; Exons ; Introns ; Models, Molecular ; Molecular Sequence Data ; Muscles/physiology ; Mutagenesis, Site-Directed ; Nucleic Acid Conformation ; RNA Precursors/*genetics ; *RNA Splicing ; RNA, Messenger/*genetics ; Transcription, Genetic ; Tropomyosin/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1992-11-13
    Description: When glycine418 of Escherichia coli glutathione reductase, which is in a closely packed region of the dimer interface, is replaced with a bulky tryptophan residue, the enzyme becomes highly cooperative (Hill coefficient 1.76) for glutathione binding. The cooperativity is lost when the mutant subunit is hybridized with a wild-type subunit to create a heterodimer. The mutation appears to disrupt atomic packing at the dimer interface, which induces a change of kinetic mechanism. A single mutation in a region of the protein remote from the active site can thus act as a molecular switch to confer cooperativity on an enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scrutton, N S -- Deonarain, M P -- Berry, A -- Perham, R N -- New York, N.Y. -- Science. 1992 Nov 13;258(5085):1140-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Cambridge, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439821" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Escherichia coli/*enzymology/genetics ; Genes, Bacterial ; Glutathione/metabolism ; Glutathione Reductase/*chemistry/genetics/metabolism ; Glycine/chemistry ; Kinetics ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; *Mutagenesis, Site-Directed ; NADP/metabolism ; Plasmids ; Protein Multimerization ; Tryptophan/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-10-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wertman, K F -- Drubin, D G -- GM42759/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Oct 30;258(5083):759-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439782" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*chemistry/genetics/metabolism ; Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Models, Molecular ; Molecular Structure ; Mutation ; Rabbits ; Tetrahymena/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1992-11-20
    Description: Macrophage colony-stimulating factor (M-CSF) triggers the development of cells of the monocyte-macrophage lineage and has a variety of stimulatory effects on mature cells of this class. The biologically active form of M-CSF is a disulfide-linked dimer that activates an intrinsic tyrosine kinase activity on the M-CSF receptor by inducing dimerization of the receptor molecules. The structure of a recombinant human M-CSF dimer, determined at 2.5 angstroms by x-ray crystallography, contains two bundles of four alpha helices laid end-to-end, with an interchain disulfide bond. Individual monomers of M-CSF show a close structural similarity to the cytokines granulocyte-macrophage colony-stimulating factor and human growth hormone. Both of these cytokines are monomeric in their active form, and their specific receptors lack intrinsic tyrosine kinase activity. The similarity of these structures suggests that the receptor binding determinants for all three cytokines may be similar.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pandit, J -- Bohm, A -- Jancarik, J -- Halenbeck, R -- Koths, K -- Kim, S H -- New York, N.Y. -- Science. 1992 Nov 20;258(5086):1358-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1455231" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography ; Disulfides ; Granulocyte-Macrophage Colony-Stimulating Factor/ultrastructure ; Growth Hormone/chemistry ; Macrophage Colony-Stimulating Factor/*ultrastructure ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/ultrastructure ; Sequence Homology, Amino Acid ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1992-01-24
    Description: The c-Myc oncoprotein belongs to a family of proteins whose DNA binding domains contain a basic region-helix-loop-helix (bHLH) motif. Systematic mutagenesis of c-Myc revealed that dimerized bHLH motifs formed a parallel four-helix bundle with the amino termini of helices 1 and 2 directed toward the inner and outer nucleotides of the DNA binding site, respectively. Both the basic region and the carboxyl-terminal end of the loop contributed to DNA binding specificity. The DNA binding domain of c-Myc may therefore be structurally similar to that of restriction endonuclease Eco RI.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halazonetis, T D -- Kandil, A N -- New York, N.Y. -- Science. 1992 Jan 24;255(5043):464-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Research, Merck Sharp and Dohme Research Laboratories, West Point, PA 19486.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1734524" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; DNA-Binding Proteins/*chemistry ; Deoxyribonuclease EcoRI/*chemistry ; Humans ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Conformation ; Proto-Oncogene Proteins c-myc/*chemistry ; Sequence Alignment ; Transcription Factors/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-03-06
    Description: Trypsin (Tr) and chymotrypsin (Ch) have similar tertiary structures, yet Tr cleaves peptides at arginine and lysine residues and Ch prefers large hydrophobic residues. Although replacement of the S1 binding site of Tr with the analogous residues of Ch is sufficient to transfer Ch specificity for ester hydrolysis, specificity for amide hydrolysis is not transferred. Trypsin is converted to a Ch-like protease when the binding pocket alterations are further modified by exchange of the Ch surface loops 185 through 188 and 221 through 225 for the analogous Tr loops. These loops are not structural components of either the S1 binding site or the extended substrate binding sites. This mutant enzyme is equivalent to Ch in its catalytic rate, but its substrate binding is impaired. Like Ch, this mutant utilizes extended substrate binding to accelerate catalysis, and substrate discrimination occurs during the acylation step rather than in substrate binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hedstrom, L -- Szilagyi, L -- Rutter, W J -- DK21344/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1992 Mar 6;255(5049):1249-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hormone Research Institute, University of California, San Francisco 94143-0534.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1546324" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Amino Acid Sequence ; Base Sequence ; Binding Sites ; Chymotrypsin/*chemistry/metabolism ; Hydrolysis ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Mutagenesis, Site-Directed ; Protein Conformation ; Substrate Specificity ; Trypsin/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1990-08-13
    Description: The three-dimensional structure of charybdotoxin, a high-affinity peptide blocker of several potassium ion channels, was determined by two-dimensional nuclear magnetic resonance (2-D NMR) spectroscopy. Unambiguous NMR assignments of backbone and side chain hydrogens were made for all 37 amino acids. The structure was determined by distance geometry and refined by nuclear Overhauser and exchange spectroscopy back calculation. The peptide is built on a foundation of three antiparallel beta strands to which other parts of the sequence are attached by three disulfide bridges. The overall shape is roughly ellipsoidal, with axes of approximately 2.5 and 1.5 nanometers. Nine of the ten charged groups are located on one side of the ellipsoid, with seven of the eight positive residues lying in a stripe 2.5 nanometers in length. The other side displays three hydrophobic residues projecting prominently into aqueous solution. The structure rationalizes several mechanistic features of charybdotoxin block of the high-conductance Ca2(+)-activated K+ channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Massefski, W Jr -- Redfield, A G -- Hare, D R -- Miller, C -- GM-20168/GM/NIGMS NIH HHS/ -- GM-31768/GM/NIGMS NIH HHS/ -- RR0031/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 3;249(4968):521-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1696395" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Charybdotoxin ; Disulfides/analysis ; Magnetic Resonance Spectroscopy/methods ; Models, Molecular ; Molecular Sequence Data ; Potassium Channels/drug effects ; Protein Conformation ; *Scorpion Venoms/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-01-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Culliton, B J -- New York, N.Y. -- Science. 1990 Jan 19;247(4940):279-80.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2153314" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/transmission ; Agriculture ; Animals ; Arenaviruses, New World ; Ebolavirus ; Hiv ; Hemorrhagic Fevers, Viral/transmission ; Herpesvirus 6, Human ; Humans ; Influenza A virus/genetics ; Influenza, Human/mortality/transmission ; Mutation ; Virus Diseases/epidemiology/etiology/*transmission ; Viruses/genetics/pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1990-12-21
    Description: Human growth hormone (hGH) elicits a diverse set of biological activities including lactation that derives from binding to the prolactin (PRL) receptor. The binding affinity of hGH for the extracellular binding domain of the hPRL receptor (hPRLbp) was increased about 8000-fold by addition of 50 micromolar ZnCl2. Zinc was not required for binding of hGH to the hGH binding protein (hGHbp) or for binding of hPRL to the hPRLbp. Other divalent metal ions (Ca2+, Mg2+, Cu2+, Mn2+, and Co2+) at physiological concentrations did not support such strong binding. Scatchard analysis indicated a stoichiometry of one Zn2+ per hGH.hPRLbp complex. Mutational analysis showed that a cluster of three residues (His18, His21, and Glu174) in hGH and His188 from the hPRLbp (conserved in all PRL receptors but not GH receptors) are probable Zn2+ ligands. This polypeptide hormone.receptor "zinc sandwich" provides a molecular mechanism to explain why nonprimate GHs are not lactogenic and offers a molecular link between zinc deficiency and its association with altered functions of hGH.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Bass, S -- Fuh, G -- Wells, J A -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1709-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2270485" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Chlorides/*pharmacology ; Growth Hormone/*metabolism ; Humans ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligonucleotide Probes ; Plasmids ; Protein Conformation ; Receptors, Prolactin/drug effects/genetics/*metabolism ; Restriction Mapping ; Zinc/metabolism/*pharmacology ; *Zinc Compounds
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-02-23
    Description: The pacemaker role of the suprachiasmatic nucleus in a mammalian circadian system was tested by neural transplantation by using a mutant strain of hamster that shows a short circadian period. Small neural grafts from the suprachiasmatic region restored circadian rhythms to arrhythmic animals whose own nucleus had been ablated. The restored rhythms always exhibited the period of the donor genotype regardless of the direction of the transplant or genotype of the host. The basic period of the overt circadian rhythm therefore is determined by cells of the suprachiasmatic region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ralph, M R -- Foster, R G -- Davis, F C -- Menaker, M -- HD13162/HD/NICHD NIH HHS/ -- HD18686/HD/NICHD NIH HHS/ -- MH09483/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 23;247(4945):975-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Virginia, Charlottesville 22903.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2305266" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Circadian Rhythm/genetics/*physiology ; Cricetinae ; Immunohistochemistry ; Male ; Mutation ; Nerve Tissue/*transplantation ; Neuropeptide Y/analysis ; Suprachiasmatic Nucleus/embryology/*physiology ; Vasopressins/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1990-02-23
    Description: Bacterial MerR proteins are dimeric DNA-binding proteins that mediate the Hg(II)-dependent induction of mercury resistance operons. Site-directed mutagenesis of the Bacillus sp. RC607 MerR protein reveals that three of four Cys residues per monomer are required for Hg(II) binding at the single high-affinity binding site. Inactive mutant homodimers can exchange subunits to form heterodimers active for Hg(II) binding. Studies of a heterodimer retaining only three of eight cysteine residues per dimer reveal that Cys79 in one subunit and Cys114 and Cys123 in the second subunit are necessary and sufficient for high-affinity Hg(II) binding in an asymmetric, subunit bridging coordination complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Helmann, J D -- Ballard, B T -- Walsh, C T -- GM20011/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 23;247(4945):946-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2305262" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacillus/*analysis/genetics ; Bacterial Proteins/genetics/*metabolism ; Base Sequence ; Binding Sites ; Cations ; DNA-Binding Proteins/genetics/*metabolism ; Macromolecular Substances ; Mercury/*metabolism ; Molecular Sequence Data ; Mutation ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-07-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, L -- New York, N.Y. -- Science. 1990 Jul 20;249(4966):236-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2115688" target="_blank"〉PubMed〈/a〉
    Keywords: DNA/genetics ; *Genes ; Humans ; Mutation ; Neurofibromatosis 1/*genetics ; Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1990-07-13
    Description: T cell hybridomas that express zeta zeta, but not zeta eta, dimers in their T cell receptors (TCRs) produce interleukin-2 (IL-2) and undergo an inhibition of spontaneous growth when activated by antigen, antibodies to the receptor, or antibodies to Thy-1. Hybridomas without zeta and eta were reconstituted with mutated zeta chains. Cytoplasmic truncations of up to 40% of the zeta molecule reconstituted normal surface assembly of TCRs, but antigen-induced IL-2 secretion and growth inhibition were lost. In contrast, cross-linking antibodies to the TCR activated these cells. A point mutation conferred the same signaling phenotype as did the truncations and caused defective antigen-induced tyrosine kinase activation. Thus zeta allows the binding of antigen/major histocompatibility complex (MHC) to alpha beta to effect TCR signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frank, S J -- Niklinska, B B -- Orloff, D G -- Mercep, M -- Ashwell, J D -- Klausner, R D -- New York, N.Y. -- Science. 1990 Jul 13;249(4965):174-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2371564" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cross-Linking Reagents ; Dose-Response Relationship, Immunologic ; Hybridomas ; Immunity, Cellular ; Immunoblotting ; Interleukin-2/*biosynthesis ; Ligands ; *Lymphocyte Activation ; Major Histocompatibility Complex ; Mice ; Molecular Sequence Data ; Mutation ; Peptide Fragments/genetics/*immunology ; Precipitin Tests ; Receptors, Antigen, T-Cell/genetics/*immunology ; Signal Transduction ; T-Lymphocytes/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 1990-10-05
    Description: Rhodopsin is a member of a family of receptors that contain seven transmembrane helices and are coupled to G proteins. The nature of the interactions between rhodopsin mutants and the G protein, transduction (Gt), was investigated by flash photolysis in order to monitor directly Gt binding and dissociation. Three mutant opsins with alterations in their cytoplasmic loops bound 11-cis-retinal to yield pigments with native rhodopsin absorption spectra, but they failed to stimulate the guanosine triphosphatase activity of Gt. The opsin mutations included reversal of a charged pair conserved in all G protein-coupled receptors at the cytoplasmic border of the third transmembrane helix (mutant CD1), replacement of 13 amino acids in the second cytoplasmic loop (mutant CD2), and deletion of 13 amino acids from the third cytoplasmic loop (mutant EF1). Whereas mutant CD1 failed to bind Gt, mutants CD2 and EF1 showed normal Gt binding but failed to release Gt in the presence of guanosine triphosphate. Therefore, it appears that at least the second and third cytoplasmic loops of rhodopsin are required for activation of bound Gt.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Franke, R R -- Konig, B -- Sakmar, T P -- Khorana, H G -- Hofmann, K P -- New York, N.Y. -- Science. 1990 Oct 5;250(4977):123-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2218504" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/metabolism ; Chromosome Deletion ; Micelles ; Models, Molecular ; Molecular Sequence Data ; *Mutation ; Photolysis ; Protein Binding ; Protein Conformation ; Rhodopsin/genetics/*metabolism ; Transducin/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-12-14
    Description: Mutations of the gene encoding p53, a 53-kilodalton cellular protein, are found frequently in human tumor cells, suggesting a crucial role for this gene in human oncogenesis. To model the stepwise mutation or loss of both p53 alleles during tumorigenesis, a human osteosarcoma cell line, Saos-2, was used that completely lacked endogenous p53. Single copies of exogenous p53 genes were then introduced by infecting cells with recombinant retroviruses containing either point-mutated or wild-type versions of the p53 cDNA sequence. Expression of wild-type p53 suppressed the neoplastic phenotype of Saos-2 cells, whereas expression of mutated p53 conferred a limited growth advantage to cells in the absence of wild-type p53. Wild-type p53 was phenotypically dominant to mutated p53 in a two-allele configuration. These results suggest that, as with the retinoblastoma gene, mutation of both alleles of the p53 gene is essential for its role in oncogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, P L -- Chen, Y M -- Bookstein, R -- Lee, W H -- CA51495/CA/NCI NIH HHS/ -- EY00278/EY/NEI NIH HHS/ -- EY05758/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 14;250(4987):1576-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, School of Medicine, University of California, San Diego, La Jolla 92093-0612.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2274789" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Base Sequence ; *Cinnamates ; Cloning, Molecular ; DNA/genetics ; Drug Resistance/genetics ; Genes, p53/*genetics ; Genetic Vectors ; Humans ; Hygromycin B/analogs & derivatives ; Molecular Sequence Data ; Moloney murine leukemia virus/genetics ; Mutation ; Neomycin ; Osteosarcoma/*genetics ; Plasmids ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1990-02-16
    Description: A region in the human immunodeficiency virus (HIV) env message, with the potential to form a complex secondary structure (designated RRE), interacts with the rev protein (Rev). This interaction is believed to mediate export of HIV structural messenger RNAs from the nucleus to the cytoplasm. In this report the regions essential for Rev interaction with the RRE are further characterized and the functional significance of Rev-RRE interaction in vivo is examined. A single hairpin loop structure within the RRE was found to be a primary determinant for Rev binding in vitro and Rev response in vivo. Maintenance of secondary structure, rather than primary nucleotide sequence alone, appeared to be necessary for Rev-RNA interaction, which distinguishes it from the mechanism for cis-acting elements in DNA. Limited changes within the 200 nucleotides, which preserved the proper RRE conformational structure, were well tolerated for Rev binding and function. Thus, variation among the RRE elements present in the diverse HIV isolates would have little, if any, effect on Rev responsiveness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olsen, H S -- Nelbock, P -- Cochrane, A W -- Rosen, C A -- New York, N.Y. -- Science. 1990 Feb 16;247(4944):845-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology and Virology, Roche Institute of Molecular Biology, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2406903" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Chromosome Deletion ; Gene Products, rev/genetics/*metabolism ; Genes, rev ; HIV/*genetics/metabolism ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Plasmids ; Protein Conformation ; RNA, Messenger/*genetics/metabolism ; RNA, Viral/genetics/metabolism ; Trans-Activators/*metabolism ; rev Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1990-12-14
    Description: A chemical description of the action of phospholipase A2 (PLA2) can now be inferred with confidence from three high-resolution x-ray crystal structures. The first is the structure of the PLA2 from the venom of the Chinese cobra (Naja naja atra) in a complex with a phosphonate transition-state analogue. This enzyme is typical of a large, well-studied homologous family of PLA2S. The second is a similar complex with the evolutionarily distant bee-venom PLA2. The third structure is the uninhibited PLA2 from Chinese cobra venom. Despite the different molecular architectures of the cobra and bee-venom PLA2s, the transition-state analogue interacts in a nearly identical way with the catalytic machinery of both enzymes. The disposition of the fatty-acid side chains suggests a common access route of the substrate from its position in the lipid aggregate to its productive interaction with the active site. Comparison of the cobra-venom complex with the uninhibited enzyme indicates that optimal binding and catalysis at the lipid-water interface is due to facilitated substrate diffusion from the interfacial binding surface to the catalytic site rather than an allosteric change in the enzyme's structure. However, a second bound calcium ion changes its position upon the binding of the transition-state analogue, suggesting a mechanism for augmenting the critical electrophile.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443688/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443688/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, D L -- White, S P -- Otwinowski, Z -- Yuan, W -- Gelb, M H -- Sigler, P B -- GM22324/GM/NIGMS NIH HHS/ -- HL36235/HL/NHLBI NIH HHS/ -- R01 HL036235/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 14;250(4987):1541-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2274785" target="_blank"〉PubMed〈/a〉
    Keywords: Bee Venoms/analysis ; Binding Sites ; Calcium/metabolism ; Catalysis ; Chemistry, Physical ; Cobra Venoms/analysis ; Models, Molecular ; Molecular Structure ; Organophosphonates/metabolism ; Phospholipases A/chemistry/*metabolism ; Phospholipases A2 ; Phospholipids/metabolism ; Physicochemical Phenomena ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-12-14
    Description: Poliovirus mutants resistant to neutralization with soluble cellular receptor were isolated. Replication of soluble receptor-resistant (srr) mutants was blocked by a monoclonal antibody directed against the HeLa cell receptor for poliovirus, indicating that the mutants use this receptor to enter cells. The srr mutants showed reduced binding to HeLa cells and cell membranes. However, the reduced binding phenotype did not have a major impact on viral replication, as judged by plaque size and one-step growth curves. These results suggest that the use of soluble receptors as antiviral agents could lead to the selection of neutralization-resistant mutants that are able to bind cell surface receptors, replicate, and cause disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaplan, G -- Peters, D -- Racaniello, V R -- AI20017/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 14;250(4987):1596-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2177226" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/immunology ; Antiviral Agents ; Baculoviridae/genetics ; Cell Line ; Cell Membrane/metabolism ; Centrifugation, Density Gradient ; DNA/genetics ; Genetic Vectors ; HeLa Cells ; Humans ; Insects ; Mutation ; Neutralization Tests ; Poliovirus/genetics/*physiology ; Receptors, Virus/genetics/*physiology ; Recombinant Proteins/physiology ; Transfection ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1991-06-28
    Description: Human apolipoprotein E, a blood plasma protein, mediates the transport and uptake of cholesterol and lipid by way of its high affinity interaction with different cellular receptors, including the low-density lipoprotein (LDL) receptor. The three-dimensional structure of the LDL receptor-binding domain of apoE has been determined at 2.5 angstrom resolution by x-ray crystallography. The protein forms an unusually elongated (65 angstroms) four-helix bundle, with the helices apparently stabilized by a tightly packed hydrophobic core that includes leucine zipper-type interactions and by numerous salt bridges on the mostly charged surface. Basic amino acids important for LDL receptor binding are clustered into a surface patch on one long helix. This structure provides the basis for understanding the behavior of naturally occurring mutants that can lead to atherosclerosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, C -- Wardell, M R -- Weisgraber, K H -- Mahley, R W -- Agard, D A -- HL-41633/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1991 Jun 28;252(5014):1817-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2063194" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Apolipoproteins E/*chemistry/genetics/metabolism ; Binding Sites ; Computer Graphics ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Receptors, LDL/*metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-11-08
    Description: The three-dimensional structure of the lactose complex of the Erythrina corallodendron lectin (EcorL), a dimer of N-glycosylated subunits, was determined crystallographically and refined at 2.0 angstrom resolution to an R value of 0.19. The tertiary structure of the subunit is similar to that of other legume lectins, but interference by the bulky N-linked heptasaccharide, which is exceptionally well ordered in the crystal, forces the EcorL dimer into a drastically different quaternary structure. Only the galactose moiety of the lactose ligand resides within the combining site. The galactose moiety is oriented differently from ligands in the mannose-glucose specific legume lectins and is held by hydrophobic interactions with Ala88, Tyr106, Phe131, and Ala218 and by seven hydrogen bonds, four of which are to the conserved Asp89, Asn133, and NH of Gly107. The specificity of legume lectins toward the different C-4 epimers appears to be associated with extensive variations in the outline of the variable parts of the binding sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaanan, B -- Lis, H -- Sharon, N -- New York, N.Y. -- Science. 1991 Nov 8;254(5033):862-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948067" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Carbohydrate Conformation ; Carbohydrate Sequence ; Computer Simulation ; Erythrina ; Glycosylation ; Hydrogen Bonding ; Lectins/*chemistry ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Oligosaccharides ; Plant Lectins ; Plants, Medicinal ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1991-05-31
    Description: The crystal structure of a murine adenosine deaminase complexed with 6-hydroxyl-1,6-dihydropurine ribonucleoside, a nearly ideal transition-state analog, has been determined and refined at 2.4 angstrom resolution. The structure is folded as an eight-stranded parallel alpha/beta barrel with a deep pocket at the beta-barrel COOH-terminal end wherein the inhibitor and a zinc are bound and completely sequestered. The presence of the zinc cofactor and the precise structure of the bound analog were not previously known. The 6R isomer of the analog is very tightly held in place by the coordination of the 6-hydroxyl to the zinc and the formation of nine hydrogen bonds. On the basis of the structure of the complex a stereoselective addition-elimination or SN2 mechanism of the enzyme is proposed with the zinc atom and the Glu and Asp residues playing key roles. A molecular explanation of a hereditary disease caused by several point mutations of an enzyme is also presented.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, D K -- Rudolph, F B -- Quiocho, F A -- CA14030/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 May 31;252(5010):1278-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925539" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Deaminase/*chemistry/deficiency/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Catalysis ; Crystallization ; Immunologic Deficiency Syndromes/*enzymology/genetics ; Mice ; Models, Molecular ; Molecular Structure ; Mutation ; Protein Conformation ; Purine Nucleosides/chemistry/*metabolism ; Ribonucleosides/chemistry/*metabolism ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1991-05-31
    Description: Filamentous bacteriophage coat protein undergoes a remarkable structural transition during the viral assembly process as it is transferred from the membrane environment of the cell, where it spans the phospholipid bilayer, to the newly extruded virus particles. Nuclear magnetic resonance (NMR) studies show the membrane-bound form of the 46-residue Pf1 coat protein to be surprisingly complex with five distinct regions. The secondary structure consists of a long hydrophobic helix (residues 19 to 42) that spans the bilayer and a short amphipathic helix (residues 6 to 13) parallel to the plane of the bilayer. The NH2-terminus (residues 1 to 5), the COOH-terminus (residues 43 to 46), and residues 14 to 18 connecting the two helices are mobile. By comparing the structure and dynamics of the membrane-bound coat protein with that of the viral form as determined by NMR and neutron diffraction, essential features of assembly process can be identified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shon, K J -- Kim, Y -- Colnago, L A -- Opella, S J -- AI20770-06/AI/NIAID NIH HHS/ -- GM34343-06/GM/NIGMS NIH HHS/ -- RR-02301/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1991 May 31;252(5010):1303-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Pennsylvania, Philadelphia 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925542" target="_blank"〉PubMed〈/a〉
    Keywords: Capsid/*chemistry/metabolism ; *Capsid Proteins ; Cell Membrane/metabolism ; Lipid Bilayers/metabolism ; *Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Structure ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-11-08
    Description: Phylogenetic-comparative and mutational analyses were used to elucidate the structure of the catalytically active RNA component of eubacterial ribonuclease P (RNase P). In addition to the refinement and extension of known structural elements, the analyses revealed a long-range interaction that results in a second pseudoknot in the RNA. This feature strongly constrains the three-dimensional structure of RNase P RNA near the active site. Some RNase P RNAs lack this structure but contain a unique, possibly compensating, structural domain. This suggests that different RNA structures located at different positions in the sequence may have equivalent architectural functions in RNase P RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haas, E S -- Morse, D P -- Brown, J W -- Schmidt, F J -- Pace, N R -- GM34527/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 8;254(5033):853-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington 47405.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1719634" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/enzymology/genetics ; Base Composition ; Base Sequence ; Biological Evolution ; Endoribonucleases/*genetics ; Escherichia coli/enzymology/genetics ; *Escherichia coli Proteins ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Nucleic Acid Conformation ; RNA, Bacterial/*genetics ; RNA, Catalytic/*genetics ; Ribonuclease P
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-05-10
    Description: The zinc finger DNA-binding motif occurs in many proteins that regulate eukaryotic gene expression. The crystal structure of a complex containing the three zinc fingers from Zif268 (a mouse immediate early protein) and a consensus DNA-binding site has been determined at 2.1 angstroms resolution and refined to a crystallographic R factor of 18.2 percent. In this complex, the zinc fingers bind in the major groove of B-DNA and wrap part way around the double helix. Each finger has a similar relation to the DNA and makes its primary contacts in a three-base pair subsite. Residues from the amino-terminal portion of an alpha helix contact the bases, and most of the contracts are made with the guanine-rich strand of the DNA. This structure provides a framework for understanding how zinc fingers recognize DNA and suggests that this motif may provide a useful basis for the design of novel DNA-binding proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pavletich, N P -- Pabo, C O -- GM-31471/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 May 10;252(5007):809-17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2028256" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Crystallography ; DNA/*metabolism ; DNA-Binding Proteins/*chemistry/isolation & purification/physiology ; Early Growth Response Protein 1 ; *Immediate-Early Proteins ; Mice ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Transcription Factors/*chemistry/isolation & purification/physiology ; Zinc Fingers/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1991-11-22
    Description: Three spatially distant surface loops were found to mediate the interaction of the coagulation protein factor X with the leukocyte integrin Mac-1. This interacting region, which by computational modeling defines a three-dimensional macromotif in the catalytic domain, was also recognized by glycoprotein C (gC), a factor X receptor expressed on herpes simplex virus (HSV)-infected endothelial cells. Peptidyl mimicry of each loop inhibited factor X binding to Mac-1 and gC, blocked monocyte generation of thrombin, and prevented monocyte adhesion to HSV-infected endothelium. These data link the ligand recognition of Mac-1 to established mechanisms of receptor-mediated vascular injury.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altieri, D C -- Etingin, O R -- Fair, D S -- Brunck, T K -- Geltosky, J E -- Hajjar, D P -- Edgington, T S -- HL 46408/HL/NHLBI NIH HHS/ -- P01 HL 16411/HL/NHLBI NIH HHS/ -- R01 HL 43773/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Nov 22;254(5035):1200-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1957171" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding, Competitive ; Cell Line ; Factor X/*metabolism/ultrastructure ; Humans ; In Vitro Techniques ; Ligands ; Macrophage-1 Antigen/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Peptides/chemistry/metabolism ; Protein Conformation ; Viral Envelope Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1991-03-15
    Description: Recent studies have suggested the existence of a tumor suppressor gene located at chromosome region 5q21. DNA probes from this region were used to study a panel of sporadic colorectal carcinomas. One of these probes, cosmid 5.71, detected a somatically rearranged restriction fragment in the DNA from a single tumor. Further analysis of the 5.71 cosmid revealed two regions that were highly conserved in rodent DNA. These sequences were used to identify a gene, MCC (mutated in colorectal cancer), which encodes an 829-amino acid protein with a short region of similarity to the G protein-coupled m3 muscarinic acetylcholine receptor. The rearrangement in the tumor disrupted the coding region of the MCC gene. Moreover, two colorectal tumors were found with somatically acquired point mutations in MCC that resulted in amino acid substitutions. MCC is thus a candidate for the putative colorectal tumor suppressor gene located at 5q21. Further studies will be required to determine whether the gene is mutated in other sporadic tumors or in the germ line of patients with an inherited predisposition to colonic tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kinzler, K W -- Nilbert, M C -- Vogelstein, B -- Bryan, T M -- Levy, D B -- Smith, K J -- Preisinger, A C -- Hamilton, S R -- Hedge, P -- Markham, A -- 6M 07184/PHS HHS/ -- CA 06973/CA/NCI NIH HHS/ -- CA 09243/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Mar 15;251(4999):1366-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Genetics Laboratory, Johns Hopkins Oncology Center, Baltimore, MD 21231.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1848370" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli/*genetics ; Amino Acid Sequence ; Animals ; Base Sequence ; *Chromosomes, Human, Pair 5 ; Colorectal Neoplasms/*genetics ; Exons ; GTP-Binding Proteins/metabolism ; Gene Expression ; *Genes, Tumor Suppressor ; Humans ; Molecular Sequence Data ; Mutation ; Oligonucleotides/chemistry ; Polymerase Chain Reaction ; Proteins/*genetics/metabolism ; Rats ; Sequence Homology, Nucleic Acid ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1991-11-29
    Description: The three-dimensional structure of the activated state of glycogen phosphorylase (GP) as induced by adenosine monophosphate (AMP) has been determined from crystals of pyridoxalpyrophosphoryl-GP. The same quaternary changes relative to the inactive conformation as those induced by phosphorylation are induced by AMP, although the two regulatory signals function through different local structural mechanisms. Moreover, previous descriptions of the phosphorylase active state have been extended by demonstrating that, on activation, the amino- and carboxyl-terminal domains of GP rotate apart by 5 degrees, thereby increasing access of substrates to the catalytic site. The structure also reveals previously unobserved interactions with the nucleotide that accounts for the specificity of the nucleotide binding site for AMP in preference to inosine monophosphate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sprang, S R -- Withers, S G -- Goldsmith, E J -- Fletterick, R J -- Madsen, N B -- R01 DK26081/DK/NIDDK NIH HHS/ -- R01 DK31507/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 29;254(5036):1367-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235-9050.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1962195" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/*pharmacology ; Amino Acid Sequence ; Binding Sites ; Enzyme Activation ; Macromolecular Substances ; Models, Molecular ; Phosphorylase b/chemistry/*metabolism ; Protein Conformation ; Pyridoxal Phosphate/analogs & derivatives/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1991-06-21
    Description: The nucleotides crucial for the specific aminoacylation of yeast tRNA(Asp) by its cognate synthetase have been identified. Steady-state aminoacylation kinetics of unmodified tRNA transcripts indicate that G34, U35, C36, and G73 are important determinants of tRNA(Asp) identity. Mutations at these positions result in a large decrease (19- to 530-fold) of the kinetic specificity constant (ratio of the catalytic rate constant kcat and the Michaelis constant Km) for aspartylation relative to wild-type tRNA(Asp). Mutation to G10-C25 within the D-stem reduced kcat/Km eightfold. This fifth mutation probably indirectly affects the presentation of the highly conserved G10 nucleotide to the synthetase. A yeast tRNA(Phe) was converted into an efficient substrate for aspartyl-tRNA synthetase through introduction of the five identity elements. The identity nucleotides are located in regions of tight interaction between tRNA and synthetase as shown in the crystal structure of the complex and suggest sites of base-specific contacts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Putz, J -- Puglisi, J D -- Florentz, C -- Giege, R -- New York, N.Y. -- Science. 1991 Jun 21;252(5013):1696-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Biochimie, Institut de Biologie Moleculaire et Cellulaire du CNRS, Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2047878" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartate-tRNA Ligase/*metabolism ; Base Sequence ; Computer Graphics ; DNA Mutational Analysis ; Fungal Proteins/metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; RNA, Fungal/metabolism ; RNA, Transfer, Amino Acyl/metabolism ; RNA, Transfer, Asp/*metabolism ; Saccharomyces cerevisiae/*enzymology ; Structure-Activity Relationship ; Substrate Specificity ; *Transfer RNA Aminoacylation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-11
    Description: An ultimate goal of Drosophila genetics is to identify and define the functions of all the genes in the organism. Traditional approaches based on the isolation of mutant genes have been extraordinary fruitful. Recent advances in the manipulation and analysis of large DNA fragments have made it possible to develop detailed molecular maps of the Drosophila genome as the initial steps in determining the complete DNA sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merriam, J -- Ashburner, M -- Hartl, D L -- Kafatos, F C -- New York, N.Y. -- Science. 1991 Oct 11;254(5029):221-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925579" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Biological Evolution ; *Chromosome Mapping ; Chromosomes ; *Cloning, Molecular ; Drosophila melanogaster/*genetics ; Gene Rearrangement ; Genes ; *Genome ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-23
    Description: FK506 and rapamycin are related immunosuppressive compounds that block helper T cell activation by interfering with signal transduction. In vitro, both drugs bind and inhibit the FK506-binding protein (FKBP) proline rotamase. Saccharomyces cerevisiae cells treated with rapamycin irreversibly arrested in the G1 phase of the cell cycle. An FKBP-rapamycin complex is concluded to be the toxic agent because (i) strains that lack FKBP proline rotamase, encoded by FPR1, were viable and fully resistant to rapamycin and (ii) FK506 antagonized rapamycin toxicity in vivo. Mutations that conferred rapamycin resistance altered conserved residues in FKBP that are critical for drug binding. Two genes other than FPR1, named TOR1 and TOR2, that participate in rapamycin toxicity were identified. Nonallelic noncomplementation between FPR1, TOR1, and TOR2 alleles suggests that the products of these genes may interact as subunits of a protein complex. Such a complex may mediate nuclear entry of signals required for progression through the cell cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heitman, J -- Movva, N R -- Hall, M N -- New York, N.Y. -- Science. 1991 Aug 23;253(5022):905-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1715094" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anti-Bacterial Agents/metabolism/pharmacology ; Base Sequence ; Binding Sites ; Carrier Proteins/antagonists & inhibitors/chemistry/genetics/metabolism ; Cell Cycle/*drug effects ; Cyclosporins/pharmacology ; Drug Resistance, Microbial/genetics ; G1 Phase/drug effects ; Humans ; Immunosuppressive Agents/pharmacology ; Molecular Sequence Data ; Molecular Structure ; Mutation ; Polyenes/metabolism/*pharmacology ; Saccharomyces cerevisiae/*cytology/drug effects ; Sequence Homology, Nucleic Acid ; Signal Transduction ; Sirolimus ; Tacrolimus ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1991-03-08
    Description: Yeast artificial chromosomes (YACs) were obtained from a 550-kilobase region that contains three probes previously mapped as very close to the locus of the fragile X syndrome. These YACs spanned the fragile site in Xq27.3 as shown by fluorescent in situ hybridization. An internal 200-kilobase segment contained four chromosomal breakpoints generated by induction of fragile X expression. A single CpG island was identified in the cloned region between markers DXS463 and DXS465 that appears methylated in mentally retarded fragile X males, but not in nonexpressing male carriers of the mutation nor in normal males. This CpG island may indicate the presence of a gene involved in the clinical phenotype of the syndrome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heitz, D -- Rousseau, F -- Devys, D -- Saccone, S -- Abderrahim, H -- Le Paslier, D -- Cohen, D -- Vincent, A -- Toniolo, D -- Della Valle, G -- New York, N.Y. -- Science. 1991 Mar 8;251(4998):1236-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Genetique Moleculaire des Eucaryotes du CNRS, Institut de Chimie Biologique, Faculte de Medecine, Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2006411" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chromosomes, Fungal ; Cloning, Molecular ; DNA Probes ; *Dinucleoside Phosphates ; Fragile X Syndrome/*genetics ; Humans ; Male ; Molecular Sequence Data ; Mutation ; Nucleic Acid Hybridization ; Oligonucleotide Probes ; Polymerase Chain Reaction ; Reference Values ; Restriction Mapping ; Saccharomyces cerevisiae/genetics ; *X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-04
    Description: Resonance between beams of x-ray waves and electronic transitions from bound atomic orbitals leads to a phenomenon known as anomalous scattering. This effect can be exploited in x-ray crystallographic studies on biological macromolecules by making diffraction measurements at selected wavelengths associated with a particular resonant transition. In this manner the problem of determining the three-dimensional structure of thousands of atoms is reduced to that of initially solving for a few anomalous scattering centers that can then be used as a reference for developing the entire structure. This method of multiwavelength anomalous diffraction has now been applied in a number of structure determinations. Optimal experiments require appropriate synchrotron instrumentation, careful experimental design, and sophisticated analytical procedures. There are rich opportunities for future applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hendrickson, W A -- GM-34102/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Oct 4;254(5028):51-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925561" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography/*methods ; Models, Molecular ; *Molecular Structure ; *Particle Accelerators ; *Protein Conformation ; X-Ray Diffraction/*instrumentation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-11-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freedman, D H -- New York, N.Y. -- Science. 1991 Nov 29;254(5036):1308-10.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1962190" target="_blank"〉PubMed〈/a〉
    Keywords: *Biotechnology ; DNA/chemistry/genetics ; Genetic Engineering ; Microchemistry ; Models, Molecular ; Protein Engineering ; Proteins/chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1991-06-07
    Description: Three- and four-dimensional heteronuclear nuclear magnetic resonance (NMR) spectroscopy offers dramatic improvements in spectral resolution by spreading through-bond and through-space correlations in three and four orthogonal frequency axes. Simultaneously, large heteronuclear couplings are exploited to circumvent problems due to the larger linewidths that are associated with increasing molecular weight. These novel experiments have been designed to extend the application of NMR as a method for determining three-dimensional structures of proteins in solution beyond the limits of conventional two-dimensional NMR (approximately 100 residues) to molecules in the 150- to 300-residue range. This potential has recently been confirmed with the determination of the high-resolution NMR structure of a protein greater than 150 residues, namely, interleukin-1 beta.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clore, G M -- Gronenborn, A M -- New York, N.Y. -- Science. 1991 Jun 7;252(5011):1390-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2047852" target="_blank"〉PubMed〈/a〉
    Keywords: Interleukin-1/chemistry ; *Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Structure ; Proteins/*chemistry ; Solutions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1991-11-15
    Description: Crystallization of macromolecules for structural studies has long been a hit-or-miss process. The crystallization of hexanucleotides as Z-DNA was studied, and it was shown that the cation concentration for crystal formation could be predicted from solvation free energy (SFE) calculations. Solution studies on the conformation and solubilities of the hexanucleotides showed that a critical concentration of the DNA in the Z-conformation must be present in solution to effect crystallization. The SFE calculations therefore predict the propensity of the hexanucleotides to adopt the left-handed conformation and the driving force required to reach this critical concentration relative to the intrinsic solubility of Z-DNA for crystallization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ho, P S -- Kagawa, T F -- Tseng, K H -- Schroth, G P -- Zhou, G W -- New York, N.Y. -- Science. 1991 Nov 15;254(5034):1003-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948069" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cations ; Crystallography ; DNA/*chemistry/ultrastructure ; Models, Molecular ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/*chemistry ; Spectrophotometry, Ultraviolet
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, A -- New York, N.Y. -- Science. 1991 Jul 26;253(5018):382-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1862340" target="_blank"〉PubMed〈/a〉
    Keywords: Cholera Toxin/*chemistry ; Macromolecular Substances ; Models, Molecular ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1991-07-26
    Description: The 2.05 angstrom (A) resolution crystal structure of a dodecasaccharide-Fab complex revealed an unusual carbohydrate recognition site, defined by aromatic amino acids and a structured water molecule, rather than the carboxylic acid and amide side chains and a structured water molecule, rather than the carboxylic acid and amide side chains that are features of transport and other carbohydrate binding proteins. A trisaccharide epitope of a branched bacterial lipopolysaccharide fills this hydrophobic pocket (8 A deep by 7 A wide) in an entropy-assisted association (association constant = 2.05 x 10(5) liters per mole, enthalpy = -20.5 +/- 1.7 kilojoules per mole, and temperature times entropy = +10.0 +/- 2.9 kilojoules per mole). The requirement for the complementarity of van der Waals surfaces and the requirements of saccharide-saccharide and protein-saccharide hydrogen-bonding networks determine the antigen conformation adopted in the bound state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cygler, M -- Rose, D R -- Bundle, D R -- New York, N.Y. -- Science. 1991 Jul 26;253(5018):442-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1713710" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Antigen-Antibody Complex ; Carbohydrate Conformation ; Carbohydrate Sequence ; Epitopes/chemistry ; Humans ; Immunoglobulin Fab Fragments/chemistry/*immunology ; Immunoglobulin G/classification/*immunology ; Lipopolysaccharides/chemistry/*immunology ; Models, Molecular ; Molecular Sequence Data ; Oligosaccharides/chemistry/*immunology ; Protein Conformation ; Salmonella/*immunology/pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1992-07-17
    Description: The transforming growth factors-beta (TGF-beta 1 through -beta 5) are a family of homodimeric cytokines that regulate proliferation and function in many cell types. Family members have 66 to 80% sequence identity and nine strictly conserved cysteines. A crystal structure of a member of this family, TGF-beta 2, has been determined at 2.1 angstrom (A) resolution and refined to an R factor of 0.172. The monomer lacks a well-defined hydrophobic core and displays an unusual elongated nonglobular fold with dimensions of approximately 60 A by 20 A by 15 A. Eight cysteines form four intrachain disulfide bonds, which are clustered in a core region forming a network complementary to the network of hydrogen bonds. The dimer is stabilized by the ninth cysteine, which forms an interchain disulfide bond, and by two identical hydrophobic interfaces. Sequence profile analysis of other members of the TGF-beta superfamily, including the activins, inhibins, and several developmental factors, imply that they also adopt the TGF-beta fold.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Daopin, S -- Piez, K A -- Ogawa, Y -- Davies, D R -- New York, N.Y. -- Science. 1992 Jul 17;257(5068):369-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1631557" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography ; Drosophila ; Humans ; Mice ; Models, Molecular ; Molecular Conformation ; Molecular Structure ; Transforming Growth Factor beta/*chemistry ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-10-02
    Description: A unified genetic, physical, and functional map of the human X chromosome is being built through a concerted, international effort. About 40 percent of the 160 million base pairs of the X chromosome DNA have been cloned in overlapping, ordered contigs derived from yeast artificial chromosomes. This rapid progress toward a physical map is accelerating the identification of inherited disease genes, 26 of which are already cloned and more than 50 others regionally localized by linkage analysis. This article summarizes the mapping strategies now used and the impact of genome research on the understanding of X chromosome inactivation and X-linked diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mandel, J L -- Monaco, A P -- Nelson, D L -- Schlessinger, D -- Willard, H -- New York, N.Y. -- Science. 1992 Oct 2;258(5079):103-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Genetique Moleculaire des Eucaryotes du CNRS, INSERM, Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439756" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Chromosome Mapping ; Dosage Compensation, Genetic ; Female ; *Genome, Human ; Humans ; Macropodidae ; Male ; Mice ; Mutation ; Sex Chromosome Aberrations ; *X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-04-24
    Description: A cleavage reagent directed to the active site of the Tetrahymena catalytic RNA was synthesized by derivatization of the guanosine substrate with a metal chelator. When complexed with iron(II), this reagent cleaved the RNA in five regions. Cleavage at adenosine 207, which is far from the guanosine-binding site in the primary and secondary structure, provides a constraint for the higher order folding of the RNA. This cleavage site constitutes physical evidence for a key feature of the Michel-Westhof model. Targeting a reactive entity to a specific site should be generally useful for determining proximity within folded RNA molecules or ribonucleoprotein complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, J F -- Cech, T R -- New York, N.Y. -- Science. 1992 Apr 24;256(5056):526-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1315076" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Edetic Acid/metabolism ; Free Radicals ; Guanosine/*metabolism ; Guanosine Monophosphate/metabolism ; Iron/metabolism ; Iron Chelating Agents/metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Nucleic Acid Conformation ; Pentetic Acid/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Tetrahymena/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-12-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beratan, D N -- Onuchic, J N -- Winkler, J R -- Gray, H B -- New York, N.Y. -- Science. 1992 Dec 11;258(5089):1740-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Pittsburgh, PA 15260.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1334572" target="_blank"〉PubMed〈/a〉
    Keywords: Cytochrome c Group/*chemistry/metabolism ; Cytochrome-c Peroxidase/*chemistry/metabolism ; *Electron Transport ; Models, Molecular ; Photosynthesis ; Protein Conformation ; Proteins/*chemistry ; Saccharomyces cerevisiae/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1992-01-17
    Description: Binding of human growth hormone (hGH) to its receptor is required for regulation of normal human growth and development. Examination of the 2.8 angstrom crystal structure of the complex between the hormone and the extracellular domain of its receptor (hGHbp) showed that the complex consists of one molecule of growth hormone per two molecules of receptor. The hormone is a four-helix bundle with an unusual topology. The binding protein contains two distinct domains, similar in some respects to immunoglobulin domains. The relative orientation of these domains differs from that found between constant and variable domains in immunoglobulin Fab fragments. Both hGHbp domains contribute residues that participate in hGH binding. In the complex both receptors donate essentially the same residues to interact with the hormone, even though the two binding sites on hGH have no structural similarity. Generally, the hormone-receptor interfaces match those identified by previous mutational analyses. In addition to the hormone-receptor interfaces, there is also a substantial contact surface between the carboxyl-terminal domains of the receptors. The relative extents of the contact areas support a sequential mechanism for dimerization that may be crucial for signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Vos, A M -- Ultsch, M -- Kossiakoff, A A -- New York, N.Y. -- Science. 1992 Jan 17;255(5042):306-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1549776" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography ; Growth Hormone/*chemistry/metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Structure ; Mutation ; Receptors, Somatotropin/*chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 1992-10-30
    Description: Comparative genomic hybridization produces a map of DNA sequence copy number as a function of chromosomal location throughout the entire genome. Differentially labeled test DNA and normal reference DNA are hybridized simultaneously to normal chromosome spreads. The hybridization is detected with two different fluorochromes. Regions of gain or loss of DNA sequences, such as deletions, duplications, or amplifications, are seen as changes in the ratio of the intensities of the two fluorochromes along the target chromosomes. Analysis of tumor cell lines and primary bladder tumors identified 16 different regions of amplification, many in loci not previously known to be amplified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kallioniemi, A -- Kallioniemi, O P -- Sudar, D -- Rutovitz, D -- Gray, J W -- Waldman, F -- Pinkel, D -- CA 44768/CA/NCI NIH HHS/ -- CA 45919/CA/NCI NIH HHS/ -- CA 47537/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Oct 30;258(5083):818-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Laboratory Medicine, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1359641" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosome Mapping ; DNA Probes ; DNA, Neoplasm/*genetics ; Female ; Fluorescein-5-isothiocyanate ; Fluorescent Dyes ; Gene Amplification ; Gene Deletion ; Humans ; In Situ Hybridization, Fluorescence ; Male ; Mutation ; Neoplasms/*genetics ; *Nucleic Acid Hybridization ; Oncogenes ; Polymorphism, Restriction Fragment Length ; Rhodamines ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1992-01-10
    Description: Six "cavity-creating" mutants, Leu46----Ala (L46A), L99A, L118A, L121A, L133A, and Phe153----Ala (F153A), were constructed within the hydrophobic core of phage T4 lysozyme. The substitutions decreased the stability of the protein at pH 3.0 by different amounts, ranging from 2.7 kilocalories per mole (kcal mol-1) for L46A and L121A to 5.0 kcal mol-1 for L99A. The double mutant L99A/F153A was also constructed and decreased in stability by 8.3 kcal mol-1. The x-ray structures of all of the variants were determined at high resolution. In every case, removal of the wild-type side chain allowed some of the surrounding atoms to move toward the vacated space but a cavity always remained, which ranged in volume from 24 cubic angstroms (A3) for L46A to 150 A3 for L99A. No solvent molecules were observed in any of these cavities. The destabilization of the mutant Leu----Ala proteins relative to wild type can be approximated by a constant term (approximately 2.0 kcal mol-1) plus a term that increases in proportion to the size of the cavity. The constant term is approximately equal to the transfer free energy of leucine relative to alanine as determined from partitioning between aqueous and organic solvents. The energy term that increases with the size of the cavity can be expressed either in terms of the cavity volume (24 to 33 cal mol-1 A-3) or in terms of the cavity surface area (20 cal mol-1 A-2). The results suggest how to reconcile a number of conflicting reports concerning the strength of the hydrophobic effect in proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eriksson, A E -- Baase, W A -- Zhang, X J -- Heinz, D W -- Blaber, M -- Baldwin, E P -- Matthews, B W -- GM12989/GM/NIGMS NIH HHS/ -- GM13709/GM/NIGMS NIH HHS/ -- GM21967/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Jan 10;255(5041):178-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, Howard Hughes Medical Institute, Eugene, OR.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1553543" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calorimetry ; Models, Molecular ; Molecular Sequence Data ; Muramidase/*chemistry/*genetics ; Mutagenesis, Site-Directed ; Protein Conformation ; Structure-Activity Relationship ; T-Phages/enzymology/genetics ; Thermodynamics ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 1992-07-03
    Description: Aldose reductase, which catalyzes the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of a wide variety of aromatic and aliphatic carbonyl compounds, is implicated in the development of diabetic and galactosemic complications involving the lens, retina, nerves, and kidney. A 1.65 angstrom refined structure of a recombinant human placenta aldose reductase reveals that the enzyme contains a parallel beta 8/alpha 8-barrel motif and establishes a new motif for NADP-binding oxidoreductases. The substrate-binding site is located in a large, deep elliptical pocket at the COOH-terminal end of the beta barrel with a bound NADPH in an extended conformation. The highly hydrophobic nature of the active site pocket greatly favors aromatic and apolar substrates over highly polar monosaccharides. The structure should allow for the rational design of specific inhibitors that might provide molecular understanding of the catalytic mechanism, as well as possible therapeutic agents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, D K -- Bohren, K M -- Gabbay, K H -- Quiocho, F A -- DK-39,044/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1992 Jul 3;257(5066):81-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1621098" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde Reductase/*chemistry/metabolism ; Amino Acid Sequence ; Binding Sites ; *Diabetes Complications ; Diabetes Mellitus/*enzymology ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; X-Ray Diffraction/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1992-12-11
    Description: The crystal structure of a 1:1 complex between yeast cytochrome c peroxidase and yeast iso-1-cytochrome c was determined at 2.3 A resolution. This structure reveals a possible electron transfer pathway unlike any previously proposed for this extensively studied redox pair. The shortest straight line between the two hemes closely follows the peroxidase backbone chain of residues Ala194, Ala193, Gly192, and finally Trp191, the indole ring of which is perpendicular to, and in van der Waals contact with, the peroxidase heme. The crystal structure at 2.8 A of a complex between yeast cytochrome c peroxidase and horse heart cytochrome c was also determined. Although crystals of the two complexes (one with cytochrome c from yeast and the other with cytochrome c from horse) grew under very different conditions and belong to different space groups, the two complex structures are closely similar, suggesting that cytochrome c interacts with its redox partners in a highly specific manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pelletier, H -- Kraut, J -- DK07233/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1992 Dec 11;258(5089):1748-55.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, San Diego, La Jolla 92093-0317.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1334573" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cytochrome c Group/*chemistry/metabolism ; Cytochrome-c Peroxidase/*chemistry/metabolism ; *Electron Transport ; Heme/metabolism ; Horses ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Saccharomyces cerevisiae/metabolism ; X-Ray Diffraction/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-11-13
    Description: Two DNA strand transfer reactions occur during retroviral reverse transcription. The mechanism of the first, minus strand strong-stop DNA, transfer has been studied in vitro with human immunodeficiency virus 1 reverse transcriptase (HIV-1 RT) and a model template-primer system derived from the HIV-1 genome. The results reveal that HIV-1 RT alone can catalyze DNA strand transfer reactions. Two kinetically distinct ribonuclease (RNase) H activities associated with HIV-1 RT are required for removal of RNA fragments annealed to the nascent DNA strand. Examination of the binding of DNA.RNA duplex and single-stranded RNA to HIV-1 RT during strand transfer supports a model where the enzyme accommodates both the acceptor RNA template and the nascent DNA strand before the transfer event is completed. The polymerase activity incorporated additional bases beyond the 5' end of the RNA template, resulting in a base misincorporation upon DNA strand transfer. Such a process occurring in vivo during retroviral homologous recombination could contribute to the hypermutability of the HIV-1 genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peliska, J A -- Benkovic, S J -- AI08275/AI/NIAID NIH HHS/ -- GM13306/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Nov 13;258(5085):1112-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Pennsylvania State University, University Park 16802.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1279806" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Catalysis ; DNA, Viral/biosynthesis/chemistry/*metabolism ; Deoxyribonucleotides ; HIV Reverse Transcriptase ; HIV-1/*enzymology/genetics ; Kinetics ; Molecular Sequence Data ; Mutation ; Nucleic Acid Hybridization ; RNA, Transfer/metabolism ; RNA, Viral/chemistry/metabolism ; RNA-Directed DNA Polymerase/genetics/*metabolism ; Ribonuclease H/metabolism ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 1992-01-31
    Description: Comparisons of experimental and calculated interproton nuclear Overhauser effect (NOE) buildup curves for duplex d(CGCGAATTCGCG)2 have been made. The calculated NOEs are based on molecular dynamics simulations including counterions and water and on the single-structure canonical A, B, and crystal forms. The calculated NOE effects include consideration of the motions of individual interproton vectors and the anisotropic tumbling of the DNA. The effects due to inclusion of anisotropic tumbling are much larger than those due to the local motion, and both improve the agreement between calculated and experimental results. The predictions based on the dynamical models agree significantly better with experiment than those based on either of the canonical forms or the crystal structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Withka, J M -- Swaminathan, S -- Srinivasan, J -- Beveridge, D L -- Bolton, P H -- 1T32 GM-08271/GM/NIGMS NIH HHS/ -- GM-37909/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Jan 31;255(5044):597-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chemistry Department, Wesleyan University, Middletown, CT 06459.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1736362" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA/*chemistry ; Magnetic Resonance Spectroscopy/methods ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/*chemistry ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1992-11-06
    Description: A 9.5-kilobase plasmid of Yersinia pestis, the causative agent of plague, is required for high virulence when mice are inoculated with the bacterium by subcutaneous injection. Inactivation of the plasmid gene pla, which encodes a surface protease, increased the median lethal dose of the bacteria for mice by a millionfold. Moreover, cloned pla was sufficient to restore segregants lacking the entire pla-bearing plasmid to full virulence. Both pla+ strains injected subcutaneously and pla- mutants injected intravenously reached high titers in liver and spleen of infected mice, whereas pla- mutants injected subcutaneously failed to do so even though they establish a sustained local infection at the injection site. More inflammatory cells accumulated in lesions caused by the pla- mutants than in lesions produced by the pla+ parent. The Pla protease was shown to be a plasminogen activator with unusual kinetic properties. It can also cleave complement C3 at a specific site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sodeinde, O A -- Subrahmanyam, Y V -- Stark, K -- Quan, T -- Bao, Y -- Goguen, J D -- AI22176/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1992 Nov 6;258(5084):1004-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439793" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Bacterial Proteins ; Colony Count, Microbial ; Escherichia coli/enzymology ; Fibrinolysin/chemistry/metabolism ; Injections, Intravenous ; Kinetics ; Liver/microbiology ; Mice ; Molecular Sequence Data ; Mutation ; Plague/microbiology ; Plasmids ; Plasminogen Activators/genetics/*physiology ; Recombinant Proteins/metabolism ; Spleen/microbiology ; Tissue Plasminogen Activator/metabolism ; Urokinase-Type Plasminogen Activator/metabolism ; Yersinia pestis/*enzymology/isolation & purification/*pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 1992-08-14
    Description: Class I major histocompatibility complex (MHC) molecules interact with self and foreign peptides of diverse amino acid sequences yet exhibit distinct allele-specific selectivity for peptide binding. The structures of the peptide-binding specificity pockets (subsites) in the groove of murine H-2Kb as well as human histocompatibility antigen class I molecules have been analyzed. Deep but highly conserved pockets at each end of the groove bind the amino and carboxyl termini of peptide through extensive hydrogen bonding and, hence, dictate the orientation of peptide binding. A deep polymorphic pocket in the middle of the groove provides the chemical and structural complementarity for one of the peptide's anchor residues, thereby playing a major role in allele-specific peptide binding. Although one or two shallow pockets in the groove may also interact with specific peptide side chains, their role in the selection of peptide is minor. Thus, usage of a limited number of both deep and shallow pockets in multiple combinations appears to allow the binding of a broad range of peptides. This binding occurs with high affinity, primarily because of extensive interactions with the peptide backbone and the conserved hydrogen bonding network at both termini of the peptide. Interactions between the anchor residue (or residues) and the corresponding allele-specific pocket provide sufficient extra binding affinity not only to enhance specificity but also to endure the presentation of the peptide at the cell surface for recognition by T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsumura, M -- Fremont, D H -- Peterson, P A -- Wilson, I A -- CA-09523/CA/NCI NIH HHS/ -- CA-97489/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Aug 14;257(5072):927-34.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1323878" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens/chemistry/*metabolism ; Binding Sites ; H-2 Antigens/chemistry/*metabolism ; HLA-A2 Antigen/chemistry ; Histocompatibility Antigens Class I/chemistry/*metabolism ; Hydrogen Bonding ; Mice ; Models, Molecular ; Molecular Sequence Data ; Ovalbumin/chemistry/metabolism ; Peptide Fragments/chemistry/metabolism ; Peptides/chemistry/*metabolism ; Protein Conformation ; Solvents ; Vesicular stomatitis Indiana virus/metabolism ; Viral Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1992-03-20
    Description: The highly symmetric pyruvate dehydrogenase multienzyme complexes have molecular masses ranging from 5 to 10 million daltons. They consist of numerous copies of three different enzymes: pyruvate dehydrogenase, dihydrolipoyl transacetylase, and lipoamide dehydrogenase. The three-dimensional crystal structure of the catalytic domain of Azotobacter vinelandii dihydrolipoyl transacetylase has been determined at 2.6 angstrom (A) resolution. Eight trimers assemble as a hollow truncated cube with an edge of 125 A, forming the core of the multienzyme complex. Coenzyme A must enter the 29 A long active site channel from the inside of the cube, and lipoamide must enter from the outside. The trimer of the catalytic domain of dihydrolipoyl transacetylase has a topology identical to chloramphenicol acetyl transferase. The atomic structure of the 24-subunit cube core provides a framework for understanding all pyruvate dehydrogenase and related multienzyme complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mattevi, A -- Obmolova, G -- Schulze, E -- Kalk, K H -- Westphal, A H -- de Kok, A -- Hol, W G -- New York, N.Y. -- Science. 1992 Mar 20;255(5051):1544-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Groningen, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1549782" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Azotobacter vinelandii/enzymology ; Chloramphenicol O-Acetyltransferase/genetics ; Humans ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Pyruvate Dehydrogenase Complex/*chemistry/genetics ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 1992-04-03
    Description: The conformation of the immunosuppressive drug cyclosporin A (CsA) in a complex with a Fab molecule has been established by crystallographic analysis to 2.65 angstrom resolution. This conformation of CsA is similar to that recently observed in the complex with the rotamase cyclophilin, its binding protein in vivo, and totally different from its conformation in an isolated form as determined from x-ray and nuclear magnetic resonance analysis. Because the surfaces of CsA interacting with cyclophilin or with the Fab are not identical, these results suggest that the conformation of CsA observed in the bound form preexists in aqueous solution and is not produced by interaction with the proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altschuh, D -- Vix, O -- Rees, B -- Thierry, J C -- New York, N.Y. -- Science. 1992 Apr 3;256(5053):92-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1566062" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/chemistry/metabolism ; Amino Acid Sequence ; Carrier Proteins/chemistry/metabolism ; Cyclosporine/*chemistry/immunology/metabolism ; Immunoglobulin Fab Fragments/*chemistry/metabolism ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Peptidylprolyl Isomerase ; Protein Binding ; Protein Conformation ; Solutions ; X-Ray Diffraction/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1992-06-26
    Description: A 3.5 angstrom resolution electron density map of the HIV-1 reverse transcriptase heterodimer complexed with nevirapine, a drug with potential for treatment of AIDS, reveals an asymmetric dimer. The polymerase (pol) domain of the 66-kilodalton subunit has a large cleft analogous to that of the Klenow fragment of Escherichia coli DNA polymerase I. However, the 51-kilodalton subunit of identical sequence has no such cleft because the four subdomains of the pol domain occupy completely different relative positions. Two of the four pol subdomains appear to be structurally related to subdomains of the Klenow fragment, including one containing the catalytic site. The subdomain that appears likely to bind the template strand at the pol active site has a different structure in the two polymerases. Duplex A-form RNA-DNA hybrid can be model-built into the cleft that runs between the ribonuclease H and pol active sites. Nevirapine is almost completely buried in a pocket near but not overlapping with the pol active site. Residues whose mutation results in drug resistance have been approximately located.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kohlstaedt, L A -- Wang, J -- Friedman, J M -- Rice, P A -- Steitz, T A -- GM 39546/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Jun 26;256(5065):1783-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1377403" target="_blank"〉PubMed〈/a〉
    Keywords: Azepines/pharmacology ; Binding Sites ; Crystallography ; DNA Polymerase I/chemistry ; Escherichia coli/genetics ; HIV-1/*enzymology ; Models, Molecular ; Molecular Structure ; Nevirapine ; Protein Conformation ; Pyridines/pharmacology ; RNA-Directed DNA Polymerase/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-03-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, S H -- New York, N.Y. -- Science. 1992 Mar 6;255(5049):1217-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1546321" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; DNA/*chemistry/metabolism ; Models, Molecular ; Molecular Structure ; *Nucleic Acid Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 1992-08-21
    Description: The cystic fibrosis transmembrane conductance regulator (CFTR) gene encodes an adenosine 3',5'-monophosphate (cyclic AMP)-activated chloride channel. In cystic fibrosis (CF) patients, loss of CFTR function because of a genetic mutation results in defective cyclic AMP-mediated chloride secretion across epithelia. Because of their potential role as an animal model for CF, mice with targeted disruption of the murine CFTR gene [CFTR(-/-)] were tested for abnormalities in epithelial chloride transport. In both freshly excised tissue from the intestine and in cultured epithelia from the proximal airways, the cyclic AMP-activated chloride secretory response was absent in CFTR(-/-) mice as compared to littermate controls. Thus, disruption of the murine CFTR gene results in the chloride transport abnormalities predicted from studies of human CF epithelia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clarke, L L -- Grubb, B R -- Gabriel, S E -- Smithies, O -- Koller, B H -- Boucher, R C -- GM20069/GM/NIGMS NIH HHS/ -- HL 42384/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1992 Aug 21;257(5073):1125-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of North Carolina, Chapel Hill 27514.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1380724" target="_blank"〉PubMed〈/a〉
    Keywords: Amiloride/pharmacology ; Animals ; Biological Transport ; Cells, Cultured ; Chlorides/*metabolism ; Colforsin/pharmacology ; Cyclic AMP/pharmacology ; Cystic Fibrosis/genetics/*metabolism ; Cystic Fibrosis Transmembrane Conductance Regulator ; *Disease Models, Animal ; Epithelium/metabolism ; Intestines/metabolism ; Membrane Proteins/genetics/*physiology ; Mice ; Mutation ; Nose/metabolism ; Trachea/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1990-03-16
    Description: An amino acid sequence encodes a message that determines the shape and function of a protein. This message is highly degenerate in that many different sequences can code for proteins with essentially the same structure and activity. Comparison of different sequences with similar messages can reveal key features of the code and improve understanding of how a protein folds and how it performs its function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bowie, J U -- Reidhaar-Olson, J F -- Lim, W A -- Sauer, R T -- AI-15706/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 16;247(4948):1306-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2315699" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acid Sequence ; Computer Graphics ; *DNA-Binding Proteins ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Proteins/*physiology/ultrastructure ; Repressor Proteins ; Structure-Activity Relationship ; Surface Properties ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1990-07-13
    Description: Krev-1 is an anti-oncogene that was originally identified by its ability to induce morphologic reversion of ras-transformed cells that continue to express the ras gene. The Krev-1-encoded protein is structurally related to Ras proteins. The biological activities of a series of ras-Krev-1 chimeras were studied to test the hypothesis that Krev-1 may directly interfere with a ras function. The ras-specific and Krev-1-specific amino acids immediately surrounding residues 32 to 44, which are identical between the two proteins, determined whether the protein induced cellular transformation or suppressed ras transformation. Because this region in Ras proteins has been implicated in effector function, the results suggest that Krev-1 suppresses ras-induced transformation by interfering with interaction of Ras with its effector.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, K -- Noda, M -- Vass, W C -- Papageorge, A G -- Lowy, D R -- New York, N.Y. -- Science. 1990 Jul 13;249(4965):162-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2115210" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/*physiology ; Animals ; Cell Transformation, Neoplastic/*genetics ; Chimera ; GTP-Binding Proteins/*genetics ; *Gene Expression Regulation, Neoplastic ; *Genes, ras ; Harvey murine sarcoma virus/genetics ; Molecular Sequence Data ; Mutation ; Restriction Mapping ; *Suppression, Genetic ; rap GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1990-12-21
    Description: lambda Cro is a dimeric DNA binding protein. Random mutagenesis and a selection for Cro activity have been used to identify the contacts between Cro subunits that are crucial for maintenance of a stably folded structure. To obtain equivalent contacts in a monomeric system, a Cro variant was designed and constructed in which the antiparallel beta-ribbon that forms the dimer interface was replaced by a beta-hairpin. The engineered monomer has a folded structure similar to wild type, is significantly more stable than wild type, and exhibits novel half-operator binding activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mossing, M C -- Sauer, R T -- AI-16982/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1712-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2148648" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriophage lambda/*genetics ; Circular Dichroism ; *DNA-Binding Proteins ; Escherichia coli/genetics ; *Genetic Variation ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Protein Conformation ; Repressor Proteins/*genetics/metabolism ; Thermodynamics ; Transcription Factors/*genetics ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...