ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-04-16
    Description: In nonribosomal biosynthesis of peptide antibiotics by multimodular synthetases, amino acid monomers are activated by the adenylation domains of the synthetase and loaded onto the adjacent carrier protein domains as thioesters, then the formation of peptide bonds and translocation of the growing chain are effected by the synthetase's condensation domains. Whether the condensation domains have any editing function has been unknown. Synthesis of aminoacyl-coenzyme A (CoA) molecules and direct enzymatic transfer of aminoacyl-phosphopantetheine to the carrier domains allow the adenylation domain editing function to be bypassed. This method was used to demonstrate that the first condensation domain of tyrocidine synthetase shows low selectivity at the donor residue (D-phenylalanine) and higher selectivity at the acceptor residue (L-proline) in the formation of the chain-initiating D-Phe-L-Pro dipeptidyl-enzyme intermediate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Belshaw, P J -- Walsh, C T -- Stachelhaus, T -- GM20011/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 16;284(5413):486-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10205056" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Carrier Protein/metabolism ; Acyl Coenzyme A/*metabolism ; Amino Acid Isomerases/*metabolism ; Anti-Bacterial Agents/*biosynthesis ; *Bacterial Proteins ; Dipeptides/metabolism ; Mass Spectrometry ; Pantetheine/analogs & derivatives/metabolism ; *Peptide Biosynthesis ; Peptide Synthases/*metabolism ; Phenylalanine/metabolism ; Proline/metabolism ; Ribosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-02
    Description: Polyketides and non-ribosomal peptides are two large families of complex natural products that are built from simple carboxylic acid or amino acid monomers, respectively, and that have important medicinal or agrochemical properties. Despite the substantial differences between these two classes of natural products, each is synthesized biologically under the control of exceptionally large, multifunctional proteins termed polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) that contain repeated, coordinated groups of active sites called modules, in which each module is responsible for catalysis of one complete cycle of polyketide or polypeptide chain elongation and associated functional group modifications. It has recently become possible to use molecular genetic methodology to alter the number, content, and order of such modules and, in so doing, to alter rationally the structure of the resultant products. This review considers the promise and challenges inherent in the combinatorial manipulation of PKS and NRPS structure in order to generate entirely "unnatural" products.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cane, D E -- Walsh, C T -- Khosla, C -- CA66736/CA/NCI NIH HHS/ -- GM20011/GM/NIGMS NIH HHS/ -- GM22172/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Oct 2;282(5386):63-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Box H, Brown University, Providence, RI 02912-9108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9756477" target="_blank"〉PubMed〈/a〉
    Keywords: Apoenzymes/metabolism ; Binding Sites ; Multienzyme Complexes/chemistry/genetics/*metabolism ; *Peptide Biosynthesis ; Peptide Synthases/chemistry/genetics/*metabolism ; Peptides/chemistry ; *Protein Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-08-16
    Description: Non-ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) found in bacteria, fungi and plants use two different types of thioesterases for the production of highly active biological compounds. Type I thioesterases (TEI) catalyse the release step from the assembly line of the final product where it is transported from one reaction centre to the next as a thioester linked to a 4'-phosphopantetheine (4'-PP) cofactor that is covalently attached to thiolation (T) domains. The second enzyme involved in the synthesis of these secondary metabolites, the type II thioesterase (TEII), is a crucial repair enzyme for the regeneration of functional 4'-PP cofactors of holo-T domains of NRPS and PKS systems. Mispriming of 4'-PP cofactors by acetyl- and short-chain acyl-residues interrupts the biosynthetic system. This repair reaction is very important, because roughly 80% of CoA, the precursor of the 4'-PP cofactor, is acetylated in bacteria. Here we report the three-dimensional structure of a type II thioesterase from Bacillus subtilis free and in complex with a T domain. Comparison with structures of TEI enzymes shows the basis for substrate selectivity and the different modes of interaction of TEII and TEI enzymes with T domains. Furthermore, we show that the TEII enzyme exists in several conformations of which only one is selected on interaction with its native substrate, a modified holo-T domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854587/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854587/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koglin, Alexander -- Lohr, Frank -- Bernhard, Frank -- Rogov, Vladimir V -- Frueh, Dominique P -- Strieter, Eric R -- Mofid, Mohammad R -- Guntert, Peter -- Wagner, Gerhard -- Walsh, Christopher T -- Marahiel, Mohamed A -- Dotsch, Volker -- P01 GM047467/GM/NIGMS NIH HHS/ -- P01 GM047467-110009/GM/NIGMS NIH HHS/ -- P01 GM047467-12/GM/NIGMS NIH HHS/ -- P01 GM047467-13/GM/NIGMS NIH HHS/ -- P01 GM047467-14/GM/NIGMS NIH HHS/ -- P01 GM047467-15/GM/NIGMS NIH HHS/ -- P01 GM047467-16/GM/NIGMS NIH HHS/ -- P01 GM047467-160010/GM/NIGMS NIH HHS/ -- P01 GM047467-160012/GM/NIGMS NIH HHS/ -- P01 GM047467-17/GM/NIGMS NIH HHS/ -- P01 GM047467-170012/GM/NIGMS NIH HHS/ -- P41 EB002026/EB/NIBIB NIH HHS/ -- P41 EB002026-29/EB/NIBIB NIH HHS/ -- P41 EB002026-30/EB/NIBIB NIH HHS/ -- P41 EB002026-31/EB/NIBIB NIH HHS/ -- P41 EB002026-32/EB/NIBIB NIH HHS/ -- P41 EB002026-33/EB/NIBIB NIH HHS/ -- R01 AI042738/AI/NIAID NIH HHS/ -- R01 AI042738-09/AI/NIAID NIH HHS/ -- R01 GM020011/GM/NIGMS NIH HHS/ -- R01 GM020011-28/GM/NIGMS NIH HHS/ -- R01 GM020011-29/GM/NIGMS NIH HHS/ -- R01 GM020011-30/GM/NIGMS NIH HHS/ -- R01 GM020011-31/GM/NIGMS NIH HHS/ -- R01 GM020011-32/GM/NIGMS NIH HHS/ -- R01 GM020011-37/GM/NIGMS NIH HHS/ -- R01 GM020011-38/GM/NIGMS NIH HHS/ -- R01 GM049338/GM/NIGMS NIH HHS/ -- R01 GM049338-17/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Aug 14;454(7206):907-11. doi: 10.1038/nature07161.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), J.W.-Goethe University, 60438 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18704089" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/*enzymology ; Bacterial Proteins/biosynthesis/*chemistry/*metabolism ; Fatty Acid Synthases/*chemistry/*metabolism ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Peptide Synthases/biosynthesis/*chemistry/*metabolism ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Thiolester Hydrolases/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-08-16
    Description: Non-ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) produce numerous secondary metabolites with various therapeutic/antibiotic properties. Like fatty acid synthases (FAS), these enzymes are organized in modular assembly lines in which each module, made of conserved domains, incorporates a given monomer unit into the growing chain. Knowledge about domain or module interactions may enable reengineering of this assembly line enzymatic organization and open avenues for the design of new bioactive compounds with improved therapeutic properties. So far, little structural information has been available on how the domains interact and communicate. This may be because of inherent interdomain mobility hindering crystallization, or because crystallized molecules may not represent the active domain orientations. In solution, the large size and internal dynamics of multidomain fragments (〉35 kilodaltons) make structure determination by nuclear magnetic resonance a challenge and require advanced technologies. Here we present the solution structure of the apo-thiolation-thioesterase (T-TE) di-domain fragment of the Escherichia coli enterobactin synthetase EntF NRPS subunit. In the holoenzyme, the T domain carries the growing chain tethered to a 4'-phosphopantetheine whereas the TE domain catalyses hydrolysis and cyclization of the iron chelator enterobactin. The T-TE di-domain forms a compact but dynamic structure with a well-defined domain interface; the two active sites are at a suitable distance for substrate transfer from T to TE. We observe extensive interdomain and intradomain motions for well-defined regions and show that these are modulated by interactions with proteins that participate in the biosynthesis. The T-TE interaction described here provides a model for NRPS, PKS and FAS function in general as T-TE-like di-domains typically catalyse the last step in numerous assembly-line chain-termination machineries.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597408/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597408/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frueh, Dominique P -- Arthanari, Haribabu -- Koglin, Alexander -- Vosburg, David A -- Bennett, Andrew E -- Walsh, Christopher T -- Wagner, Gerhard -- EB 002026/EB/NIBIB NIH HHS/ -- GM066360/GM/NIGMS NIH HHS/ -- GM47467/GM/NIGMS NIH HHS/ -- P01 GM047467/GM/NIGMS NIH HHS/ -- P01 GM047467-11/GM/NIGMS NIH HHS/ -- P01 GM047467-110009/GM/NIGMS NIH HHS/ -- P01 GM047467-12/GM/NIGMS NIH HHS/ -- P01 GM047467-13/GM/NIGMS NIH HHS/ -- P01 GM047467-14/GM/NIGMS NIH HHS/ -- P01 GM047467-15/GM/NIGMS NIH HHS/ -- P01 GM047467-16/GM/NIGMS NIH HHS/ -- P01 GM047467-160012/GM/NIGMS NIH HHS/ -- P01 GM047467-17/GM/NIGMS NIH HHS/ -- P01 GM047467-170012/GM/NIGMS NIH HHS/ -- P41 EB002026/EB/NIBIB NIH HHS/ -- P41 EB002026-28/EB/NIBIB NIH HHS/ -- P41 EB002026-29/EB/NIBIB NIH HHS/ -- P41 EB002026-30/EB/NIBIB NIH HHS/ -- P41 EB002026-31/EB/NIBIB NIH HHS/ -- P41 EB002026-32/EB/NIBIB NIH HHS/ -- P41 EB002026-33/EB/NIBIB NIH HHS/ -- P41 GM066360/GM/NIGMS NIH HHS/ -- P41 GM066360-01/GM/NIGMS NIH HHS/ -- P41 GM066360-02/GM/NIGMS NIH HHS/ -- P41 GM066360-03/GM/NIGMS NIH HHS/ -- P41 GM066360-04/GM/NIGMS NIH HHS/ -- P41 GM066360-05/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Aug 14;454(7206):903-6. doi: 10.1038/nature07162.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA. dominique_frueh@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18704088" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Enterobactin/biosynthesis ; Escherichia coli/*enzymology/genetics ; Ligases/*chemistry/genetics/*metabolism ; Models, Molecular ; Multienzyme Complexes/*chemistry/genetics/*metabolism ; Nuclear Magnetic Resonance, Biomolecular ; *Peptide Biosynthesis, Nucleic Acid-Independent ; Protein Structure, Tertiary ; Protein Subunits/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1990-02-23
    Description: Bacterial MerR proteins are dimeric DNA-binding proteins that mediate the Hg(II)-dependent induction of mercury resistance operons. Site-directed mutagenesis of the Bacillus sp. RC607 MerR protein reveals that three of four Cys residues per monomer are required for Hg(II) binding at the single high-affinity binding site. Inactive mutant homodimers can exchange subunits to form heterodimers active for Hg(II) binding. Studies of a heterodimer retaining only three of eight cysteine residues per dimer reveal that Cys79 in one subunit and Cys114 and Cys123 in the second subunit are necessary and sufficient for high-affinity Hg(II) binding in an asymmetric, subunit bridging coordination complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Helmann, J D -- Ballard, B T -- Walsh, C T -- GM20011/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 23;247(4945):946-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2305262" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacillus/*analysis/genetics ; Bacterial Proteins/genetics/*metabolism ; Base Sequence ; Binding Sites ; Cations ; DNA-Binding Proteins/genetics/*metabolism ; Macromolecular Substances ; Mercury/*metabolism ; Molecular Sequence Data ; Mutation ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-10-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischbach, Michael A -- Walsh, Christopher T -- New York, N.Y. -- Science. 2006 Oct 27;314(5799):603-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17068249" target="_blank"〉PubMed〈/a〉
    Keywords: Alkyl and Aryl Transferases/genetics/metabolism ; Artemisinins/chemistry/*metabolism ; Cyclization ; Echinomycin/*biosynthesis/chemistry ; Escherichia coli/genetics/metabolism ; *Genetic Engineering ; Hemiterpenes/metabolism ; Monensin/*biosynthesis/chemistry ; Organophosphorus Compounds/metabolism ; Peptide Biosynthesis, Nucleic Acid-Independent ; Polyketide Synthases/metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Sesquiterpenes/chemistry/*metabolism ; Streptomyces/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-03-20
    Description: Polyketide (PK) and nonribosomal peptides (NRP), constructed on multimodular enzymatic assembly lines, often attain the conformations that establish biological activity by cyclization constraints introduced by tailoring enzymes. The dedicated tailoring enzymes are encoded by genes clustered with the assembly line genes for coordinated regulation. NRP heterocyclizations to thiazoles and oxazoles can occur on the elongating framework of acyl-S enzyme intermediates, whereas tandem cyclic PK polyether formation of furans and pyrans can be initiated by post-assembly line epoxidases. Macrocyclizations of NRP, PK, and hybrid NRP-PK scaffolds occur in assembly line chain termination steps. Post-assembly line cascades of enzymatic oxidations also create cross-linked and cyclized architectures that generate the mature scaffolds of natural product antibiotics. The modularity of the natural product assembly lines and permissivity of tailoring enzymes offer prospects for reprogramming to create novel antibiotics with optimized properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walsh, Christopher T -- AI 42738/AI/NIAID NIH HHS/ -- GM 20011/GM/NIGMS NIH HHS/ -- GM 49338/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1805-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. christopher_walsh@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15031493" target="_blank"〉PubMed〈/a〉
    Keywords: *Anti-Bacterial Agents/biosynthesis/chemistry/pharmacology ; Cyclization ; *Macrolides/chemistry/metabolism/pharmacology ; Molecular Structure ; Multienzyme Complexes/*metabolism ; Peptide Synthases/*metabolism ; Peptides, Cyclic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-11-15
    Description: Esherichia coli microcin B17 is a posttranslationally modified peptide that inhibits bacterial DNA gyrase. It contains four oxazole and four thiazole rings and is representative of a broad class of pharmaceutically important natural products with five-membered heterocycles derived from peptide precursors. An in vitro assay was developed to detect heterocycle formation, and an enzyme complex, microcin B17 synthase, was purified and found to contain three proteins, McbB, McbC, and McbD, that convert 14 residues into the eight mono- and bisheterocyclic moieties in vitro that confer antibiotic activity on mature microcin B17. These enzymatic reactions alter the peptide backbone connectivity. The propeptide region of premicrocin is the major recognition determinant for binding and downstream heterocycle formation by microcin B17 synthase. A general pathway for the enzymatic biosynthesis of these heterocycles is formulated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Y M -- Milne, J C -- Madison, L L -- Kolter, R -- Walsh, C T -- 5T32AI07410-03/AI/NIAID NIH HHS/ -- 5T32GM07306-19/GM/NIGMS NIH HHS/ -- GM20011/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 15;274(5290):1188-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8895467" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Anti-Bacterial Agents/*biosynthesis/chemistry/pharmacology ; *Bacterial Proteins ; Bacteriocins/*biosynthesis/chemistry/genetics/pharmacology ; Enzyme Inhibitors/pharmacology ; Escherichia coli/*enzymology/genetics ; Molecular Weight ; Multienzyme Complexes/genetics/*isolation & purification/*metabolism ; Operon ; Oxazoles/analysis ; Oxidation-Reduction ; Oxygen/metabolism ; Protein Precursors/biosynthesis/genetics ; Protein Processing, Post-Translational ; Substrate Specificity ; Thiazoles/analysis ; Topoisomerase II Inhibitors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1994-10-21
    Description: The molecular structure of the D-alanine:D-alanine ligase of the ddlB gene of Escherichia coli, co-crystallized with an S,R-methylphosphinate and adenosine triphosphate, was determined by x-ray diffraction to a resolution of 2.3 angstroms. A catalytic mechanism for the ligation of two D-alanine substrates is proposed in which a helix dipole and a hydrogen-bonded triad of tyrosine, serine, and glutamic acid assist binding and deprotonation steps. From sequence comparison, it is proposed that a different triad exists in a recently discovered D-alanine:D-lactate ligase (VanA) present in vancomycin-resistant enterococci. A molecular mechanism for the altered specificity of VanA is suggested.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fan, C -- Moews, P C -- Walsh, C T -- Knox, J R -- 1RO1-AI-34330/AI/NIAID NIH HHS/ -- GM-49338/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 21;266(5184):439-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939684" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry/metabolism ; Amino Acid Sequence ; Bacterial Proteins/chemistry ; Binding Sites ; *Carbon-Oxygen Ligases ; Computer Graphics ; Crystallography, X-Ray ; Dipeptides/biosynthesis ; Drug Resistance, Microbial ; Escherichia coli/drug effects/*enzymology ; Hydrogen Bonding ; Ligases/chemistry ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Peptide Synthases/*chemistry/genetics/metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Substrate Specificity ; Vancomycin/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-07-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walsh, C T -- New York, N.Y. -- Science. 1993 Jul 16;261(5119):308-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8392747" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Wall/drug effects/metabolism ; *DNA Transposable Elements ; Drug Resistance, Microbial ; *Genes, Bacterial ; Gram-Positive Bacteria/*drug effects/genetics ; Peptidoglycan/metabolism ; Vancomycin/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...