ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (816)
  • Mutation  (813)
  • Chemistry
  • 2000-2004  (816)
  • Science. 288(5473): 1931.  (2)
  • Science. 286(5447): 2096-7.  (1)
  • Science. 286(5448): 2284-5.  (1)
  • Science. 286(5449): 2431.  (1)
  • Science. 286(5449): 2433-4.  (1)
  • Science. 286(5449): 2434-6.  (1)
  • Science. 286(5449): 2437.  (1)
  • Science. 286(5449): 2498-500.  (1)
  • Science. 286(5449): 2501-4.  (1)
  • Science. 286(5449): 2507-10.  (1)
  • Science. 286(5449): 2514-7.  (1)
  • Science. 286(5449): 2531-4.  (1)
  • Science. 287(5453): 646-50.  (1)
  • Science. 287(5455): 985-6.  (1)
  • Science. 287(5457): 1378.  (1)
  • Science. 287(5457): 1477-9.  (1)
  • Science. 287(5457): 1485-9.  (1)
  • Science. 287(5457): 1497-500.  (1)
  • Science. 287(5457): 1500-3.  (1)
  • Science. 287(5459): 1809-15.  (1)
  • 25
Collection
  • Articles  (816)
Years
Year
Journal
  • 1
    Publication Date: 2002-04-06
    Description: Higher order chromatin structure presents a barrier to the recognition and repair of DNA damage. Double-strand breaks (DSBs) induce histone H2AX phosphorylation, which is associated with the recruitment of repair factors to damaged DNA. To help clarify the physiological role of H2AX, we targeted H2AX in mice. Although H2AX is not essential for irradiation-induced cell-cycle checkpoints, H2AX-/- mice were radiation sensitive, growth retarded, and immune deficient, and mutant males were infertile. These pleiotropic phenotypes were associated with chromosomal instability, repair defects, and impaired recruitment of Nbs1, 53bp1, and Brca1, but not Rad51, to irradiation-induced foci. Thus, H2AX is critical for facilitating the assembly of specific DNA-repair complexes on damaged DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721576/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721576/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Celeste, Arkady -- Petersen, Simone -- Romanienko, Peter J -- Fernandez-Capetillo, Oscar -- Chen, Hua Tang -- Sedelnikova, Olga A -- Reina-San-Martin, Bernardo -- Coppola, Vincenzo -- Meffre, Eric -- Difilippantonio, Michael J -- Redon, Christophe -- Pilch, Duane R -- Olaru, Alexandru -- Eckhaus, Michael -- Camerini-Otero, R Daniel -- Tessarollo, Lino -- Livak, Ferenc -- Manova, Katia -- Bonner, William M -- Nussenzweig, Michel C -- Nussenzweig, Andre -- Z99 CA999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2002 May 3;296(5569):922-7. Epub 2002 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11934988" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/immunology/physiology ; Base Sequence ; Cell Aging ; Cell Cycle ; Cells, Cultured ; *Chromosome Aberrations ; DNA Damage ; *DNA Repair ; Female ; Gene Targeting ; Histones/chemistry/*genetics/*physiology ; Immunoglobulin Class Switching ; Infertility, Male/genetics/physiopathology ; Lymphocyte Count ; Male ; Meiosis ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Mutation ; Phosphorylation ; *Recombination, Genetic ; Spermatocytes/physiology ; T-Lymphocytes/immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-08-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lynch, Michael -- New York, N.Y. -- Science. 2002 Aug 9;297(5583):945-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington, IN 47405, USA. mlynch@bio.indiana.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12169715" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Caenorhabditis elegans/genetics ; Chromosomes/genetics ; Chromosomes, Human/genetics ; *Gene Duplication ; Gene Rearrangement ; Gene Silencing ; *Genes, Duplicate ; *Genome, Human ; Genomics ; Humans ; Mutation ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-06-22
    Description: Positive-strand RNA viruses such as poliovirus replicate their genomes on intracellular membranes of their eukaryotic hosts. Electron microscopy has revealed that purified poliovirus RNA-dependent RNA polymerase forms planar and tubular oligomeric arrays. The structural integrity of these arrays correlates with cooperative RNA binding and RNA elongation and is sensitive to mutations that disrupt intermolecular contacts predicted by the polymerase structure. Membranous vesicles isolated from poliovirus-infected cells contain structures consistent with the presence of two-dimensional polymerase arrays on their surfaces during infection. Therefore, host cytoplasmic membranes may function as physical foundations for two-dimensional polymerase arrays, conferring the advantages of surface catalysis to viral RNA replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyle, John M -- Bullitt, Esther -- Bienz, Kurt -- Kirkegaard, Karla -- AI-42119/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2002 Jun 21;296(5576):2218-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12077417" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; HeLa Cells ; Humans ; Hydrogen-Ion Concentration ; Inclusion Bodies, Viral/metabolism/ultrastructure ; Microscopy, Electron ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Poliovirus/*enzymology/physiology ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; RNA Replicase/*chemistry/isolation & purification/*metabolism/ultrastructure ; RNA, Viral/biosynthesis/*metabolism ; Viral Core Proteins/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-05-04
    Description: There is a relation between stress and alcohol drinking. We show that the corticotropin-releasing hormone (CRH) system that mediates endocrine and behavioral responses to stress plays a role in the control of long-term alcohol drinking. In mice lacking a functional CRH1 receptor, stress leads to enhanced and progressively increasing alcohol intake. The effect of repeated stress on alcohol drinking behavior appeared with a delay and persisted throughout life. It was associated with an up-regulation of the N-methyl-d-aspartate receptor subunit NR2B. Alterations in the CRH1 receptor gene and adaptional changes in NR2B subunits may constitute a genetic risk factor for stress-induced alcohol drinking and alcoholism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sillaber, Inge -- Rammes, Gerhard -- Zimmermann, Stephan -- Mahal, Beatrice -- Zieglgansberger, Walter -- Wurst, Wolfgang -- Holsboer, Florian -- Spanagel, Rainer -- New York, N.Y. -- Science. 2002 May 3;296(5569):931-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany. sillaber@mpipsykl.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11988580" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; *Alcohol Drinking ; Alcoholism/*etiology/genetics ; Animals ; Brain/metabolism ; Corticotropin-Releasing Hormone/physiology ; Ethanol/blood ; Female ; Hippocampus/physiology ; In Vitro Techniques ; Male ; Mice ; Mice, Knockout ; Models, Animal ; Mutation ; Receptors, AMPA/metabolism ; Receptors, Corticotropin-Releasing Hormone/*genetics/*physiology ; Receptors, Kainic Acid/metabolism ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Signal Transduction ; Stress, Physiological/physiopathology ; Stress, Psychological/*physiopathology ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-05-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Demaine, Linda J -- Fellmeth, Aaron X -- New York, N.Y. -- Science. 2003 May 30;300(5624):1375-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RAND, Santa Monica, CA 90401, USA. demaine@rand.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12775825" target="_blank"〉PubMed〈/a〉
    Keywords: Aluminum Oxide ; Chemical Phenomena ; Chemistry ; Natural Science Disciplines ; Patents as Topic/*legislation & jurisprudence ; Plant Extracts ; Plant Roots ; Titanium ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marshall, Eliot -- New York, N.Y. -- Science. 2002 May 17;296(5571):1218.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12016281" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/anatomy & histology/*genetics/growth & development/*physiology ; Arabidopsis Proteins/genetics/*physiology ; Biological Evolution ; Drosophila/anatomy & histology/genetics/growth & development/physiology ; Drosophila Proteins/genetics/physiology ; Genes, Insect ; Genes, Plant ; HSP90 Heat-Shock Proteins/genetics/*physiology ; Mutation ; Plant Leaves/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2002-02-09
    Description: Double-stranded RNA-mediated gene interference (RNAi) in Caenorhabditis elegans systemically inhibits gene expression throughout the organism. To investigate how gene-specific silencing information is transmitted between cells, we constructed a strain that permits visualization of systemic RNAi. We used this strain to identify systemic RNA interference-deficient (sid) loci required to spread gene-silencing information between tissues but not to initiate or maintain an RNAi response. One of these loci, sid-1, encodes a conserved protein with predicted transmembrane domains. SID-1 is expressed in cells sensitive to RNAi, is localized to the cell periphery, and is required cell-autonomously for systemic RNAi.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winston, William M -- Molodowitch, Christina -- Hunter, Craig P -- New York, N.Y. -- Science. 2002 Mar 29;295(5564):2456-9. Epub 2002 Feb 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11834782" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/embryology/*genetics/metabolism ; Caenorhabditis elegans Proteins/chemistry/*genetics/*physiology ; Calmodulin-Binding Proteins/genetics ; Cytoplasm/metabolism ; Embryo, Nonmammalian/physiology ; *Gene Silencing ; Genes, Helminth ; Germ Cells/metabolism ; Green Fluorescent Proteins ; Intestines/metabolism ; Luminescent Proteins/genetics ; Membrane Proteins/chemistry/*genetics/*physiology ; Molecular Sequence Data ; Mosaicism ; Muscle Proteins/genetics ; Muscles/metabolism ; Mutation ; Protein Structure, Tertiary ; RNA, Double-Stranded/*genetics/metabolism ; RNA, Helminth/*genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, Kathryn -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1499.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645825" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; *Biological Evolution ; Desert Climate ; Ecosystem ; Environment ; Genes, Plant ; Helianthus/*genetics/growth & development/physiology ; History, 20th Century ; History, 21st Century ; *Hybridization, Genetic ; Mutation ; Phenotype ; Sodium Chloride/pharmacology ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-05-06
    Description: Degenerative disorders of motor neurons include a range of progressive fatal diseases such as amyotrophic lateral sclerosis (ALS), spinal-bulbar muscular atrophy (SBMA), and spinal muscular atrophy (SMA). Although the causative genetic alterations are known for some cases, the molecular basis of many SMA and SBMA-like syndromes and most ALS cases is unknown. Here we show that missense point mutations in the cytoplasmic dynein heavy chain result in progressive motor neuron degeneration in heterozygous mice, and in homozygotes this is accompanied by the formation of Lewy-like inclusion bodies, thus resembling key features of human pathology. These mutations exclusively perturb neuron-specific functions of dynein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hafezparast, Majid -- Klocke, Rainer -- Ruhrberg, Christiana -- Marquardt, Andreas -- Ahmad-Annuar, Azlina -- Bowen, Samantha -- Lalli, Giovanna -- Witherden, Abi S -- Hummerich, Holger -- Nicholson, Sharon -- Morgan, P Jeffrey -- Oozageer, Ravi -- Priestley, John V -- Averill, Sharon -- King, Von R -- Ball, Simon -- Peters, Jo -- Toda, Takashi -- Yamamoto, Ayumu -- Hiraoka, Yasushi -- Augustin, Martin -- Korthaus, Dirk -- Wattler, Sigrid -- Wabnitz, Philipp -- Dickneite, Carmen -- Lampel, Stefan -- Boehme, Florian -- Peraus, Gisela -- Popp, Andreas -- Rudelius, Martina -- Schlegel, Juergen -- Fuchs, Helmut -- Hrabe de Angelis, Martin -- Schiavo, Giampietro -- Shima, David T -- Russ, Andreas P -- Stumm, Gabriele -- Martin, Joanne E -- Fisher, Elizabeth M C -- New York, N.Y. -- Science. 2003 May 2;300(5620):808-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurodegenerative Disease, Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730604" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anterior Horn Cells/pathology ; Apoptosis ; *Axonal Transport ; Cell Differentiation ; Cell Movement ; Central Nervous System/embryology ; Chromosome Mapping ; Dimerization ; Dyneins/chemistry/*genetics/*physiology ; Female ; Ganglia, Spinal/pathology ; Golgi Apparatus/metabolism/ultrastructure ; Heterozygote ; Homozygote ; Lewy Bodies/pathology ; Male ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Motor Neuron Disease/*genetics/pathology/physiopathology ; Motor Neurons/*physiology/ultrastructure ; Mutation ; Mutation, Missense ; *Nerve Degeneration ; Peptide Fragments/metabolism ; Phenotype ; Point Mutation ; Spinal Nerves/growth & development ; Tetanus Toxin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2002-12-10
    Description: The formation and patterning of mesoderm during mammalian gastrulation require the activity of Nodal, a secreted mesoderm-inducing factor of the transforming growth factor-beta (TGF-beta) family. Here we show that the transcriptional corepressor DRAP1 has a very specific role in regulation of Nodal activity during mouse embryogenesis. We find that loss of Drap1 leads to severe gastrulation defects that are consistent with increased expression of Nodal and can be partially suppressed by Nodal heterozygosity. Biochemical studies indicate that DRAP1 interacts with and inhibits DNA binding by the winged-helix transcription factor FoxH1 (FAST), a critical component of a positive feedback loop for Nodal activity. We propose that DRAP1 limits the spread of a morphogenetic signal by down-modulating the response to the Nodal autoregulatory loop.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iratni, Rabah -- Yan, Yu-Ting -- Chen, Canhe -- Ding, Jixiang -- Zhang, Yi -- Price, Sandy M -- Reinberg, Danny -- Shen, Michael M -- New York, N.Y. -- Science. 2002 Dec 6;298(5600):1996-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, Division of Nucleic Acids Enzymology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12471260" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Cell Line ; Crosses, Genetic ; DNA/metabolism ; DNA-Binding Proteins/metabolism ; *Embryonic and Fetal Development ; Female ; Forkhead Transcription Factors ; Gastrula/*physiology ; Gene Expression Regulation, Developmental ; Gene Targeting ; Heterozygote ; In Situ Hybridization ; Left-Right Determination Factors ; Male ; Mesoderm/cytology/physiology ; Mice ; Morphogenesis ; Mutation ; Nodal Protein ; Phenotype ; Protein Binding ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/genetics/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; *Signal Transduction ; Transcription Factors/metabolism ; Transforming Growth Factor beta/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2002-04-27
    Description: Little is known of how plant disease resistance (R) proteins recognize pathogens and activate plant defenses. Rcr3 is specifically required for the function of Cf-2, a Lycopersicon pimpinellifolium gene bred into cultivated tomato (Lycopersicon esculentum) for resistance to Cladosporium fulvum. Rcr3 encodes a secreted papain-like cysteine endoprotease. Genetic analysis shows Rcr3 is allelic to the L. pimpinellifolium Ne gene, which suppresses the Cf-2-dependent autonecrosis conditioned by its L. esculentum allele, ne (necrosis). Rcr3 alleles from these two species encode proteins that differ by only seven amino acids. Possible roles of Rcr3 in Cf-2-dependent defense and autonecrosis are discussed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kruger, Julia -- Thomas, Colwyn M -- Golstein, Catherine -- Dixon, Mark S -- Smoker, Matthew -- Tang, Saijun -- Mulder, Lonneke -- Jones, Jonathan D G -- New York, N.Y. -- Science. 2002 Apr 26;296(5568):744-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11976458" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Base Sequence ; Cladosporium/*physiology ; Cloning, Molecular ; Cysteine Endopeptidases/chemistry/*genetics/*metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Gene Expression Regulation, Plant ; *Genes, Plant ; Immunity, Innate ; Leucine/analogs & derivatives/pharmacology ; Lycopersicon esculentum/*enzymology/genetics/*microbiology/physiology ; Molecular Sequence Data ; Mutation ; Phenotype ; *Plant Diseases ; Plant Leaves/enzymology ; Plant Proteins/*metabolism ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Recombinant Fusion Proteins/chemistry/metabolism ; Tobacco/genetics ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2003-03-01
    Description: Recent progress in the science of aging is driven largely by the use of model systems, ranging from yeast and nematodes to mice. These models have revealed conservation in genetic pathways that balance energy production and its damaging by-products with pathways that preserve somatic maintenance. Maintaining genome integrity has emerged as a major factor in longevity and cell viability. Here we discuss the use of mouse models with defects in genome maintenance for understanding the molecular basis of aging in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hasty, Paul -- Campisi, Judith -- Hoeijmakers, Jan -- van Steeg, Harry -- Vijg, Jan -- AG17242/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1355-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78245, USA. hastye@uthscsa.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610296" target="_blank"〉PubMed〈/a〉
    Keywords: *Aging/genetics ; Aging, Premature/*genetics ; Animals ; Apoptosis ; Cell Aging ; *DNA Damage ; DNA Helicases/genetics/metabolism ; *DNA Repair/genetics ; Exodeoxyribonucleases ; *Genome ; Genome, Human ; Humans ; Longevity/genetics ; Mice ; Mutation ; Reactive Oxygen Species/metabolism ; RecQ Helicases ; Syndrome ; Telomere/physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-11-01
    Description: Parkinson's disease (PD) is a complex disorder with many different causes, yet they may intersect in common pathways, raising the possibility that neuroprotective agents may have broad applicability in the treatment of PD. Current evidence suggests that mitochondrial complex I inhibition may be the central cause of sporadic PD and that derangements in complex I cause alpha-synuclein aggregation, which contributes to the demise of dopamine neurons. Accumulation and aggregation of alpha-synuclein may further contribute to the death of dopamine neurons through impairments in protein handling and detoxification. Dysfunction of parkin (a ubiquitin E3 ligase) and DJ-1 could contribute to these deficits. Strategies aimed at restoring complex I activity, reducing oxidative stress and alpha-synuclein aggregation, and enhancing protein degradation may hold particular promise as powerful neuroprotective agents in the treatment of PD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, Ted M -- Dawson, Valina L -- NS38377/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):819-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. tdawson@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593166" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Brain/*metabolism/pathology ; Cysteine Endopeptidases/metabolism ; Dopamine/metabolism ; Electron Transport Complex I/antagonists & inhibitors/genetics/*metabolism ; Humans ; Mitochondria/enzymology ; Multienzyme Complexes/metabolism ; Mutation ; Nerve Degeneration ; Nerve Tissue Proteins/chemistry/genetics/metabolism ; Neurons/*metabolism/pathology ; Oxidative Stress ; Parkinson Disease/*etiology/genetics/metabolism/pathology ; Parkinsonian Disorders/genetics/metabolism/pathology ; Proteasome Endopeptidase Complex ; Synucleins ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/genetics/metabolism ; alpha-Synuclein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lubick, Naomi -- New York, N.Y. -- Science. 2003 Jul 25;301(5632):451.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12881542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atlantic Ocean ; Conservation of Natural Resources ; DNA, Mitochondrial/genetics ; *Ecosystem ; Female ; Genetic Variation ; Genetics, Population ; Male ; Mutation ; Population Density ; Population Dynamics ; Time Factors ; *Whales/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2003-04-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eden, Amir -- Gaudet, Francois -- Waghmare, Alpana -- Jaenisch, Rudolf -- CA87869/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 18;300(5618):455.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12702868" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Mammalian/*genetics/physiology ; DNA (Cytosine-5-)-Methyltransferase/genetics/metabolism ; *DNA Methylation ; Fibroblasts/metabolism ; Genes, Neurofibromatosis 1 ; Genes, p53 ; Humans ; *Loss of Heterozygosity ; Mice ; Mutation ; Neoplasms/genetics ; Recombination, Genetic ; Sarcoma/*genetics ; Soft Tissue Neoplasms/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heintz, Nathaniel -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):59-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Rockefeller University, New York, NY 10021, USA. heintz@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12843383" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Substitution ; Animals ; Ataxin-1 ; Ataxins ; Cell Nucleus/metabolism ; Disease Progression ; Mice ; Mice, Transgenic ; Mutation ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Peptides ; Phosphorylation ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Purkinje Cells/metabolism/ultrastructure ; Signal Transduction ; Spinocerebellar Ataxias/etiology/genetics/pathology/*physiopathology ; *Trinucleotide Repeat Expansion ; Tyrosine 3-Monooxygenase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-01
    Description: Although curvature of biological surfaces has been considered from mathematical and biophysical perspectives, its molecular and developmental basis is unclear. We have studied the cin mutant of Antirrhinum, which has crinkly rather than flat leaves. Leaves of cin display excess growth in marginal regions, resulting in a gradual introduction of negative curvature during development. This reflects a change in the shape and the progression of a cell-cycle arrest front moving from the leaf tip toward the base. CIN encodes a TCP protein and is expressed downstream of the arrest front. We propose that CIN promotes zero curvature (flatness) by making cells more sensitive to an arrest signal, particularly in marginal regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nath, Utpal -- Crawford, Brian C W -- Carpenter, Rosemary -- Coen, Enrico -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1404-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610308" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antirrhinum/cytology/*genetics/*growth & development/metabolism ; Base Sequence ; Cell Cycle ; Cell Differentiation ; Cell Division ; Cell Size ; Cyclin D3 ; Cyclins/genetics/metabolism ; Gene Deletion ; *Gene Expression Regulation, Plant ; *Genes, Plant ; Histones/genetics/metabolism ; Molecular Sequence Data ; Mutagenesis, Insertional ; Mutation ; Plant Leaves/anatomy & histology/cytology/*growth & development/metabolism ; Plant Proteins/chemistry/genetics/metabolism ; Surface Properties ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2003-04-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Sandre-Giovannoli, Annachiara -- Bernard, Rafaelle -- Cau, Pierre -- Navarro, Claire -- Amiel, Jeanne -- Boccaccio, Irene -- Lyonnet, Stanislas -- Stewart, Colin L -- Munnich, Arnold -- Le Merrer, Martine -- Levy, Nicolas -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2055. Epub 2003 Apr 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Inserm U491: Genetique Medicale et Developpement, Faculte de Medecine Timone, Marseille, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12702809" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cell Nucleus/ultrastructure ; Child ; Exons ; Female ; Humans ; Lamin Type A/analysis/*chemistry/*genetics ; Lymphocytes/chemistry/ultrastructure ; Mutation ; Polymorphism, Genetic ; Progeria/blood/*genetics ; RNA Splicing ; RNA, Messenger/genetics ; Sequence Deletion ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-11-25
    Description: Complete genomic sequences from diverse phylogenetic lineages reveal notable increases in genome complexity from prokaryotes to multicellular eukaryotes. The changes include gradual increases in gene number, resulting from the retention of duplicate genes, and more abrupt increases in the abundance of spliceosomal introns and mobile genetic elements. We argue that many of these modifications emerged passively in response to the long-term population-size reductions that accompanied increases in organism size. According to this model, much of the restructuring of eukaryotic genomes was initiated by nonadaptive processes, and this in turn provided novel substrates for the secondary evolution of phenotypic complexity by natural selection. The enormous long-term effective population sizes of prokaryotes may impose a substantial barrier to the evolution of complex genomes and morphologies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lynch, Michael -- Conery, John S -- New York, N.Y. -- Science. 2003 Nov 21;302(5649):1401-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington, IN 47405, USA. mlynch@bio.indiana.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14631042" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Bacteria/genetics ; Body Constitution ; Eukaryota/genetics ; *Evolution, Molecular ; Fungi/genetics ; Gene Duplication ; Gene Silencing ; Genetic Drift ; Genetic Variation ; *Genome ; Humans ; Interspersed Repetitive Sequences ; Introns ; Invertebrates/genetics ; Mutation ; *Phylogeny ; Plants/genetics ; Population Density ; Recombination, Genetic ; Selection, Genetic ; Spliceosomes ; Vertebrates/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elena, Santiago F -- Sanjuan, Rafael -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2074-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto de Biologia Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-UPV, 46022 Valencia, Spain. sfelena@ibmcp.upv.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684807" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Animals ; *Biological Evolution ; Chlamydomonas/physiology ; Darkness ; *Ecosystem ; Environment ; *Genetic Variation ; Genotype ; Light ; Mutation ; Phenotype ; Pseudomonas fluorescens/genetics/*physiology ; RNA Viruses/physiology ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2003-08-16
    Description: Plants attacked by pathogens rapidly deposit callose, a beta-1,3-glucan, at wound sites. Traditionally, this deposition is thought to reinforce the cell wall and is regarded as a defense response. Surprisingly, here we found that powdery mildew resistant 4 (pmr4), a mutant lacking pathogen-induced callose, became resistant to pathogens, rather than more susceptible. This resistance was due to mutation of a callose synthase, resulting in a loss of the induced callose response. Double-mutant analysis indicated that blocking the salicylic acid (SA) defense signaling pathway was sufficient to restore susceptibility to pmr4 mutants. Thus, callose or callose synthase negatively regulates the SA pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishimura, Marc T -- Stein, Monica -- Hou, Bi-Huei -- Vogel, John P -- Edwards, Herb -- Somerville, Shauna C -- New York, N.Y. -- Science. 2003 Aug 15;301(5635):969-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12920300" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/cytology/genetics/*metabolism/*microbiology ; Ascomycota/*physiology ; Cell Death ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; Glucans/metabolism ; Glucosyltransferases/*genetics/metabolism ; *Membrane Proteins ; Mutation ; Oligonucleotide Array Sequence Analysis ; Phenotype ; *Plant Diseases ; Plant Leaves/metabolism ; Salicylic Acid/*metabolism ; *Schizosaccharomyces pombe Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-10-04
    Description: The success of the green revolution largely resulted from the creation of dwarf cultivars of wheat and rice, which had much higher yields than conventional crops. Characterization of these dwarf cultivars showed that the mutant genes were involved in either the synthesis or signaling of gibberellin, a plant growth hormone. In his Perspective, Salamini highlights new work (Multani et al.) that identifies the cause of dwarfism in agronomically important varieties of maize and sorghum. In these cases, dwarfism is caused by defective transport of another growth hormone called auxin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Salamini, Francesco -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):71-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Breeding Research, 50829 Koln, Germany. salamini@mpiz-koeln.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526071" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Arabidopsis/genetics/growth & development/metabolism ; Arabidopsis Proteins/genetics/metabolism ; Biological Transport ; Breeding ; *Genes, Plant ; Genetic Engineering ; Genome, Plant ; Indoleacetic Acids/*metabolism ; Light ; Mutation ; P-Glycoproteins/genetics/metabolism ; Phenotype ; Plant Proteins/genetics/metabolism ; Poaceae/genetics/growth & development/*metabolism ; Quantitative Trait Loci ; Zea mays/genetics/growth & development/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gundersen, Gregg G -- Bretscher, Anthony -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2040-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Cell Biology and Department of Pathology, Columbia University, New York, NY 10032, USA. ggg1@columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829769" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; CDC28 Protein Kinase, S cerevisiae/*metabolism ; Cell Cycle Proteins/metabolism ; Cell Division ; Cell Polarity ; Cyclins/metabolism ; Microtubule Proteins/metabolism ; Microtubule-Organizing Center/*metabolism/ultrastructure ; Microtubules/*metabolism/ultrastructure ; Models, Biological ; Mutation ; Myosin Heavy Chains/metabolism ; Myosin Type V/metabolism ; Nuclear Proteins/*metabolism ; Phosphorylation ; Protein Transport ; Saccharomyces cerevisiae/cytology/metabolism/ultrastructure ; Saccharomyces cerevisiae Proteins/metabolism ; Spindle Apparatus/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2003-08-23
    Description: To elucidate gene function on a global scale, we identified pairs of genes that are coexpressed over 3182 DNA microarrays from humans, flies, worms, and yeast. We found 22,163 such coexpression relationships, each of which has been conserved across evolution. This conservation implies that the coexpression of these gene pairs confers a selective advantage and therefore that these genes are functionally related. Many of these relationships provide strong evidence for the involvement of new genes in core biological functions such as the cell cycle, secretion, and protein expression. We experimentally confirmed the predictions implied by some of these links and identified cell proliferation functions for several genes. By assembling these links into a gene-coexpression network, we found several components that were animal-specific as well as interrelationships between newly evolved and ancient modules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stuart, Joshua M -- Segal, Eran -- Koller, Daphne -- Kim, Stuart K -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):249-55. Epub 2003 Aug 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stanford Medical Informatics, 251 Campus Drive, Medical School Office Building X-215, Stanford, CA 94305-5329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12934013" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Caenorhabditis elegans/genetics ; Cell Cycle/genetics ; Cell Division/genetics ; Computational Biology ; Conserved Sequence ; Databases, Genetic ; Drosophila melanogaster/genetics ; *Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation ; Genes, Fungal ; Genes, Helminth ; Genes, Insect ; Humans ; Models, Statistical ; Mutation ; *Oligonucleotide Array Sequence Analysis ; Proteins/metabolism ; Saccharomyces cerevisiae/genetics ; Signal Transduction/genetics ; Species Specificity ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allen, John F -- New York, N.Y. -- Science. 2003 Mar 7;299(5612):1530-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biochemistry, Center for Chemistry and Chemical Engineering, Box 124, Lund University, SE-221 00 Lund, Sweden. john.allen@plantbio.lu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12624254" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/chemistry/genetics/isolation & purification/metabolism ; Animals ; Binding Sites ; Chlamydomonas reinhardtii/*enzymology/genetics/metabolism ; Chlorophyll/metabolism ; Electron Transport ; Fluorescence ; Gene Library ; Light ; Light-Harvesting Protein Complexes ; Models, Biological ; Mutation ; Oxidation-Reduction ; Phosphorylation ; Photosynthesis ; Photosynthetic Reaction Center Complex Proteins/*metabolism ; Plastoquinone/metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*isolation & ; purification/*metabolism ; Signal Transduction ; Thylakoids/*enzymology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-08-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Svejstrup, Jesper Q -- New York, N.Y. -- Science. 2003 Aug 22;301(5636):1053-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research, London Research Institute, Clare Hall Laboratories, Hertfordshire, UK. j.svejstrup@cancer.org.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12933997" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatin/metabolism ; DNA/metabolism ; *DNA-Binding Proteins ; Dimerization ; Drosophila/genetics/metabolism ; *Drosophila Proteins ; *High Mobility Group Proteins ; Histones/*metabolism ; Humans ; Mutation ; Nuclear Proteins/*metabolism ; Nucleosomes/*metabolism ; RNA Polymerase II/*metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; *Transcription, Genetic ; Transcriptional Elongation Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2003-09-27
    Description: A survey of the dog genome sequence (6.22 million sequence reads; 1.5x coverage) demonstrates the power of sample sequencing for comparative analysis of mammalian genomes and the generation of species-specific resources. More than 650 million base pairs (〉25%) of dog sequence align uniquely to the human genome, including fragments of putative orthologs for 18,473 of 24,567 annotated human genes. Mutation rates, conserved synteny, repeat content, and phylogeny can be compared among human, mouse, and dog. A variety of polymorphic elements are identified that will be valuable for mapping the genetic basis of diseases and traits in the dog.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirkness, Ewen F -- Bafna, Vineet -- Halpern, Aaron L -- Levy, Samuel -- Remington, Karin -- Rusch, Douglas B -- Delcher, Arthur L -- Pop, Mihai -- Wang, Wei -- Fraser, Claire M -- Venter, J Craig -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1898-903.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512627" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Mammalian/genetics ; Computational Biology ; Conserved Sequence ; Contig Mapping ; DNA, Intergenic ; Dogs/*genetics ; Genetic Variation ; *Genome ; Genome, Human ; Genomics ; Humans ; Long Interspersed Nucleotide Elements ; Male ; Mice/genetics ; Molecular Sequence Data ; Mutation ; Phylogeny ; Physical Chromosome Mapping ; Polymorphism, Single Nucleotide ; RNA, Messenger/genetics ; Repetitive Sequences, Nucleic Acid ; Sequence Alignment ; *Sequence Analysis, DNA ; Short Interspersed Nucleotide Elements ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2003-10-25
    Description: Many vertebrate organs adopt asymmetric positions with respect to the midline, but little is known about the cellular changes and tissue movements that occur downstream of left-right gene expression to produce this asymmetry. Here, we provide evidence that the looping of the zebrafish gut results from the asymmetric migration of the neighboring lateral plate mesoderm (LPM). Mutations that disrupt the epithelial structure of the LPM perturb this asymmetric migration and inhibit gut looping. Asymmetric LPM migration still occurs when the endoderm is ablated from the gut-looping region, suggesting that the LPM can autonomously provide a motive force for gut displacement. Finally, reducing left-sided Nodal activity randomizes the pattern of LPM migration and gut looping. These results reveal a cellular framework for the regulation of organ laterality by asymmetrically expressed genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horne-Badovinac, Sally -- Rebagliati, Michael -- Stainier, Didier Y R -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):662-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Cell Movement ; Cues ; Endoderm/physiology ; *Gene Expression Regulation, Developmental ; Guanylate Kinase ; Homeodomain Proteins/genetics/physiology ; Intestines/*embryology ; Isoenzymes ; Mesoderm/cytology/physiology ; Morphogenesis ; Mutation ; *Nuclear Proteins ; Nucleoside-Phosphate Kinase/genetics/metabolism ; Oligonucleotides, Antisense ; Phenotype ; Protein Kinase C/genetics/physiology ; Transcription Factors/genetics/physiology ; Zebrafish/*embryology/genetics ; Zebrafish Proteins/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2003-01-25
    Description: Disruption of the adaptor protein ELF, a beta-spectrin, leads to disruption of transforming growth factor-beta (TGF-beta) signaling by Smad proteins in mice. Elf-/- mice exhibit a phenotype similar to smad2+/-/smad3+/- mutant mice of midgestational death due to gastrointestinal, liver, neural, and heart defects. We show that TGF-beta triggers phosphorylation and association of ELF with Smad3 and Smad4, followed by nuclear translocation. ELF deficiency results in mislocalization of Smad3 and Smad4 and loss of the TGF-beta-dependent transcriptional response, which could be rescued by overexpression of the COOH-terminal region of ELF. This study reveals an unexpected molecular link between a major dynamic scaffolding protein and a key signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Yi -- Katuri, Varalakshmi -- Dillner, Allan -- Mishra, Bibhuti -- Deng, Chu-Xia -- Mishra, Lopa -- R01 DK56111/DK/NIDDK NIH HHS/ -- R01 DK58637/DK/NIDDK NIH HHS/ -- R03 DK53861/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 24;299(5606):574-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Biology, Department of Medicine, Georgetown University, Washington, DC 20007, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12543979" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple ; Animals ; Carrier Proteins/metabolism ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; Contractile Proteins/metabolism ; DNA-Binding Proteins/metabolism ; Embryonic and Fetal Development ; Filamins ; Gene Targeting ; Genes, fos ; Liver/abnormalities/embryology/*metabolism ; Mice ; Mice, Knockout ; Microfilament Proteins/metabolism ; Microscopy, Confocal ; Mutation ; Phenotype ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; *Signal Transduction ; Smad2 Protein ; Smad3 Protein ; Smad4 Protein ; Spectrin/genetics/*metabolism ; Trans-Activators/metabolism ; Transcriptional Activation ; Transforming Growth Factor beta/*metabolism/pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2003-01-11
    Description: Proteins of the ARGONAUTE family are important in diverse posttranscriptional RNA-mediated gene-silencing systems as well as in transcriptional gene silencing in Drosophila and fission yeast and in programmed DNA elimination in Tetrahymena. We cloned ARGONAUTE4 (AGO4) from a screen for mutants that suppress silencing of the Arabidopsis SUPERMAN (SUP) gene. The ago4-1 mutant reactivated silent SUP alleles and decreased CpNpG and asymmetric DNA methylation as well as histone H3 lysine-9 methylation. In addition, ago4-1 blocked histone and DNA methylation and the accumulation of 25-nucleotide small interfering RNAs (siRNAs) that correspond to the retroelement AtSN1. These results suggest that AGO4 and long siRNAs direct chromatin modifications, including histone methylation and non-CpG DNA methylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zilberman, Daniel -- Cao, Xiaofeng -- Jacobsen, Steven E -- GM07185/GM/NIGMS NIH HHS/ -- GM60398/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):716-9. Epub 2003 Jan 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell, and Developmental Biology, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1606.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522258" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Argonaute Proteins ; Cloning, Molecular ; *DNA Methylation ; DNA, Plant/metabolism ; DNA-Cytosine Methylases/genetics/metabolism ; Dinucleoside Phosphates/metabolism ; Gene Silencing ; Genes, Plant ; Genes, Suppressor ; Histone-Lysine N-Methyltransferase ; Histones/*metabolism ; Methylation ; Methyltransferases/genetics/metabolism ; Mutation ; RNA, Plant/metabolism ; RNA, Small Interfering/*metabolism ; Retroelements ; Suppression, Genetic ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2000-01-05
    Description: Mice lacking mCry1 and mCry2 are behaviorally arrhythmic. As shown here, cyclic expression of the clock genes mPer1 and mPer2 (mammalian Period genes 1 and 2) in the suprachiasmatic nucleus and peripheral tissues is abolished and mPer1 and mPer2 mRNA levels are constitutively high. These findings indicate that the biological clock is eliminated in the absence of both mCRY1 and mCRY2 (mammalian cryptochromes 1 and 2) and support the idea that mammalian CRY proteins act in the negative limb of the circadian feedback loop. The mCry double-mutant mice retain the ability to have mPer1 and mPer2 expression induced by a brief light stimulus known to phase-shift the biological clock in wild-type animals. Thus, mCRY1 and mCRY2 are dispensable for light-induced phase shifting of the biological clock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okamura, H -- Miyake, S -- Sumi, Y -- Yamaguchi, S -- Yasui, A -- Muijtjens, M -- Hoeijmakers, J H -- van der Horst, G T -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2531-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Brain Science, Kobe University School of Medicine, Kobe 650-0017, Japan. okamurah@kobe-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617474" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/*physiology ; Cell Cycle Proteins ; Circadian Rhythm/*physiology ; Cryptochromes ; *Drosophila Proteins ; *Eye Proteins ; Feedback ; Flavoproteins/genetics/*physiology ; Gene Expression Regulation ; In Situ Hybridization ; *Light ; Liver/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mutation ; Nuclear Proteins/*genetics ; Period Circadian Proteins ; *Photoreceptor Cells, Invertebrate ; Polymerase Chain Reaction ; RNA, Messenger/genetics/metabolism ; Receptors, G-Protein-Coupled ; Retina/metabolism ; Suprachiasmatic Nucleus/metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2000-01-05
    Description: The nematode pharynx has a potassium channel with unusual properties, which allows the muscles to repolarize quickly and with the proper delay. Here, the Caenorhabditis elegans exp-2 gene is shown to encode this channel. EXP-2 is a Kv-type (voltage-activated) potassium channel that has inward-rectifying properties resembling those of the structurally dissimilar human ether-a-go-go-related gene (HERG) channel. Null and gain-of-function mutations affect pharyngeal muscle excitability in ways that are consistent with the electrophysiological behavior of the channel, and thereby demonstrate a direct link between the kinetics of this unusual channel and behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791429/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791429/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, M W -- Fleischhauer, R -- Dent, J A -- Joho, R H -- Avery, L -- HL46154/HL/NHLBI NIH HHS/ -- NS28407/NS/NINDS NIH HHS/ -- R01 HL046154/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2501-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. wdavis@biology.utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617464" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Caenorhabditis elegans/genetics/*physiology ; Feeding Behavior ; Genes, Helminth ; Genes, Reporter ; Ion Channel Gating ; Kinetics ; Membrane Potentials ; Models, Molecular ; Muscles/metabolism ; Mutation ; Neurons/metabolism ; Oocytes/metabolism ; Pharyngeal Muscles/physiology ; Potassium Channels/chemistry/genetics/*physiology ; Protein Conformation ; RNA, Complementary/genetics ; Recombinant Fusion Proteins/biosynthesis ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-01-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2434-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10636797" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/*physiology ; Brain/metabolism ; CLOCK Proteins ; Circadian Rhythm/*physiology ; Darkness ; Drosophila/genetics/physiology ; *Drosophila Proteins ; Gene Expression Regulation ; Genes, Insect ; Light ; Mutation ; Neurons/metabolism ; Neuropeptides/genetics/*physiology ; Transcription Factors/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2000-03-24
    Description: Selective microtubule orientation toward spatially defined cortical sites is critical to polarized cellular processes as diverse as axon outgrowth and T cell cytotoxicity. In yeast, oriented cytoplasmic microtubules align the mitotic spindle between mother and bud. The cortical marker protein Kar9 localizes to the bud tip and is required for the orientation of microtubules toward this region. Here, we show that Kar9 directs microtubule orientation by acting through Bim1, a conserved microtubule-binding protein. Bim1 homolog EB1 was originally identified through its interaction with adenomatous polyposis coli (APC) tumor suppressor, raising the possibility that an APC-EB1 linkage orients microtubules in higher cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korinek, W S -- Copeland, M J -- Chaudhuri, A -- Chant, J -- GM07620-19/GM/NIGMS NIH HHS/ -- GM07620-20/GM/NIGMS NIH HHS/ -- GM49782/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2257-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10731146" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Cell Cycle Proteins/genetics/*metabolism ; Cell Nucleus/physiology ; Cytoskeletal Proteins/metabolism ; Microtubule Proteins/genetics/*metabolism ; Microtubule-Associated Proteins/metabolism ; Microtubules/metabolism/*physiology ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Phenotype ; Protein Binding ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/cytology/genetics/*physiology ; *Saccharomyces cerevisiae Proteins ; Spindle Apparatus/*physiology ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-15
    Description: Mutation at the mouse progressive ankylosis (ank) locus causes a generalized, progressive form of arthritis accompanied by mineral deposition, formation of bony outgrowths, and joint destruction. Here, we show that the ank locus encodes a multipass transmembrane protein (ANK) that is expressed in joints and other tissues and controls pyrophosphate levels in cultured cells. A highly conserved gene is present in humans and other vertebrates. These results identify ANK-mediated control of pyrophosphate levels as a possible mechanism regulating tissue calcification and susceptibility to arthritis in higher animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ho, A M -- Johnson, M D -- Kingsley, D M -- 5T32GM07365/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jul 14;289(5477):265-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology and Howard Hughes Medical Institute, Beckman Center B300, Stanford University School of Medicine, Stanford, CA 94305-5327, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10894769" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthritis/*genetics/metabolism/pathology ; Base Sequence ; Biological Transport ; COS Cells ; Calcinosis/*genetics ; Chromosome Mapping ; Cloning, Molecular ; Dna ; Diphosphates/*metabolism ; Durapatite/metabolism ; Gene Expression ; Genetic Complementation Test ; Humans ; Membrane Proteins/*genetics/metabolism/*physiology ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; Phenotype ; Phosphate Transport Proteins ; Physical Chromosome Mapping ; Sequence Homology, Nucleic Acid ; Tissue Distribution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2000-08-01
    Description: The path of the nucleic acids through a transcription elongation complex was tracked by mapping cross-links between bacterial RNA polymerase (RNAP) and transcript RNA or template DNA onto the x-ray crystal structure. In the resulting model, the downstream duplex DNA is nestled in a trough formed by the beta' subunit and enclosed on top by the beta subunit. In the RNAP channel, the RNA/DNA hybrid extends from the enzyme active site, along a region of the beta subunit harboring rifampicin resistance mutations, to the beta' subunit "rudder." The single-stranded RNA is then extruded through another channel formed by the beta-subunit flap domain. The model provides insight into the functional properties of the transcription complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korzheva, N -- Mustaev, A -- Kozlov, M -- Malhotra, A -- Nikiforov, V -- Goldfarb, A -- Darst, S A -- GM30717/GM/NIGMS NIH HHS/ -- GM49242/GM/NIGMS NIH HHS/ -- GM53759/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jul 28;289(5479):619-25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10915625" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cross-Linking Reagents ; Crystallography, X-Ray ; DNA/chemistry/genetics/*metabolism ; DNA Primers ; DNA-Directed RNA Polymerases/*chemistry/genetics/metabolism ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligoribonucleotides/chemistry/metabolism ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Messenger/chemistry/genetics/*metabolism ; Templates, Genetic ; Thermus/enzymology ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-24
    Description: The 120-megabase euchromatic portion of the Drosophila melanogaster genome has been sequenced. Because the genome is compact and many genetic tools are available, and because fly cell biology and development have much in common with mammals, this sequence may be the Rosetta stone for deciphering the human genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kornberg, T B -- Krasnow, M A -- New York, N.Y. -- Science. 2000 Mar 24;287(5461):2218-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10731136" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biology ; Cloning, Molecular ; DNA Transposable Elements ; Drosophila melanogaster/*genetics/physiology ; Genes, Insect ; *Genetics, Medical ; *Genome ; *Genome, Human ; Humans ; Mutation ; Physical Chromosome Mapping ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: Microbiologists often focus on one organism and its relationship to its host at one point in time. But viewed in light of evolution, host-parasite relationships range from deadly to helpful, depending on the communication between them. At a meeting here last month of virologists, bacteriologists, parasitologists, and molecular biologists--each dealing with different microorganisms in distinct ways--researchers lamented that evolution is often considered outside the bailiwick of microbiologists, particularly those studying infectious diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 2000 Nov 24;290(5496):1491-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11185502" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/genetics/*pathogenicity ; Bacterial Infections/microbiology ; *Bacterial Physiological Phenomena ; *Biological Evolution ; Escherichia coli/genetics/pathogenicity/physiology ; *Host-Parasite Interactions ; Humans ; Leishmania/pathogenicity/*physiology ; Leishmaniasis/parasitology ; Mutation ; Rhizobium/physiology ; *Symbiosis ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2000-09-01
    Description: Activation of the transcription factor nuclear factor (NF)-kappaB by proinflammatory stimuli leads to increased expression of genes involved in inflammation. Activation of NF-kappaB requires the activity of an inhibitor of kappaB (IkappaB)-kinase (IKK) complex containing two kinases (IKKalpha and IKKbeta) and the regulatory protein NEMO (NF-kappaB essential modifier). An amino-terminal alpha-helical region of NEMO associated with a carboxyl-terminal segment of IKKalpha and IKKbeta that we term the NEMO-binding domain (NBD). A cell-permeable NBD peptide blocked association of NEMO with the IKK complex and inhibited cytokine-induced NF-kappaB activation and NF-kappaB-dependent gene expression. The peptide also ameliorated inflammatory responses in two experimental mouse models of acute inflammation. The NBD provides a target for the development of drugs that would block proinflammatory activation of the IKK complex without inhibiting basal NF-kappaB activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉May, M J -- D'Acquisto, F -- Madge, L A -- Glockner, J -- Pober, J S -- Ghosh, S -- AI 33443/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 1;289(5484):1550-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10968790" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Inflammatory Agents, Non-Steroidal/chemistry/pharmacology ; COS Cells ; Cells, Cultured ; E-Selectin/biosynthesis/genetics ; Endothelium, Vascular/metabolism ; Gene Expression Regulation ; HeLa Cells ; Humans ; I-kappa B Kinase ; Inflammation/drug therapy ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; NF-kappa B/*metabolism ; Peptides/chemistry/*pharmacology ; Point Mutation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2000-03-31
    Description: The maternal determinant Bicoid (Bcd) represents the paradigm of a morphogen that provides positional information for pattern formation. However, as bicoid seems to be a recently acquired gene in flies, the question was raised as to how embryonic patterning is achieved in organisms with more ancestral modes of development. Because the phylogenetically conserved Hunchback (Hb) protein had previously been shown to act as a morphogen in abdominal patterning, we asked which functions of Bcd could be performed by Hb. By reestablishing a proposed ancient regulatory circuitry in which maternal Hb controls zygotic hunchback expression, we show that Hb is able to form thoracic segments in the absence of Bcd.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wimmer, E A -- Carleton, A -- Harjes, P -- Turner, T -- Desplan, C -- New York, N.Y. -- Science. 2000 Mar 31;287(5462):2476-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lehrstuhl Genetik, Universitat Bayreuth, 95447 Bayreuth, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10741965" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; DNA-Binding Proteins/genetics/*physiology ; Drosophila/*embryology/genetics ; *Drosophila Proteins ; Embryonic Development ; Female ; Gene Expression Regulation, Developmental ; Genes, Insect ; Homeodomain Proteins/genetics/*physiology ; Insect Proteins/genetics/*physiology ; Male ; Mutation ; Phenotype ; Promoter Regions, Genetic ; Thorax/embryology ; Trans-Activators/genetics/*physiology ; Transcription Factors/genetics/*physiology ; Transgenes ; Zinc Fingers ; Zygote/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sodha, N -- Williams, R -- Mangion, J -- Bullock, S L -- Yuille, M R -- Eeles, R A -- New York, N.Y. -- Science. 2000 Jul 21;289(5478):359.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Royal Marsden NHS Trust, Sutton, Surrey SM2 5PT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10939935" target="_blank"〉PubMed〈/a〉
    Keywords: Checkpoint Kinase 2 ; Chromosomes, Human, Pair 15/genetics ; DNA Mutational Analysis ; Exons ; Gene Duplication ; Genetic Variation ; Humans ; Li-Fraumeni Syndrome/*genetics ; Mutation ; Polymerase Chain Reaction ; Polymorphism, Genetic ; Protein Kinases/*genetics ; *Protein-Serine-Threonine Kinases ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-14
    Description: Model organisms such as yeast have proved exceptionally valuable for revealing new information about the molecular pathways involved in the aging of cells. In her Perspective, Campisi comments on new work showing that caloric restriction increases longevity in yeast by activating the SIR2 gene, which alters the compactness of chromatin and thus regulates gene expression (Lin et al.).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Campisi, J -- New York, N.Y. -- Science. 2000 Sep 22;289(5487):2062-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. jcampisi@lbl.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11032557" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*physiology ; Animals ; Cell Division ; Chromatin/*physiology ; DNA Repair ; DNA Replication ; DNA, Circular/metabolism ; DNA, Fungal/metabolism ; DNA, Ribosomal/metabolism ; *Energy Intake ; *Gene Silencing ; Glucose/metabolism ; Histone Deacetylases/genetics/*metabolism ; Histones/metabolism ; Longevity ; Mutation ; NAD/metabolism ; Reactive Oxygen Species/metabolism ; Recombination, Genetic ; Saccharomyces cerevisiae/genetics/*physiology ; *Silent Information Regulator Proteins, Saccharomyces cerevisiae ; Sirtuin 2 ; Sirtuins ; Trans-Activators/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2000-05-29
    Description: Pathogenic mycobacteria, including the agent of tuberculosis, Mycobacterium tuberculosis, must replicate in macrophages for long-term persistence within their niche during chronic infection: organized collections of macrophages and lymphocytes called granulomas. We identified several genes preferentially expressed when Mycobacterium marinum, the cause of fish and amphibian tuberculosis, resides in host granulomas and/or macrophages. Two were homologs of M. tuberculosis PE/PE-PGRS genes, a family encoding numerous repetitive glycine-rich proteins of unknown function. Mutation of two PE-PGRS genes produced M. marinum strains incapable of replication in macrophages and with decreased persistence in granulomas. Our results establish a direct role in virulence for some PE-PGRS proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramakrishnan, L -- Federspiel, N A -- Falkow, S -- AI 32396/AI/NIAID NIH HHS/ -- K08 AI 01400/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 May 26;288(5470):1436-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA. lalitar@cmgm.stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10827956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/chemistry/*genetics ; Cells, Cultured ; Disease Models, Animal ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Glycine/analysis ; Granuloma/*microbiology/pathology ; Humans ; Macrophages/*microbiology ; Mutation ; Mycobacterium Infections, Nontuberculous/*microbiology/pathology ; Mycobacterium marinum/*genetics/growth & development/*pathogenicity ; Mycobacterium tuberculosis/genetics/pathogenicity ; Promoter Regions, Genetic ; Rana pipiens ; Tuberculosis/microbiology ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-13
    Description: Stromal cells are thought to generate specific regulatory microenviroments or "niches" that control stem cell behavior. Characterizing stem cell niches in vivo remains an important goal that has been difficult to achieve. The individual ovarioles of the Drosophila ovary each contain about two germ line stem cells that maintain oocyte production. Here we show that anterior ovariolar somatic cells comprising three cell types act as a germ line stem cell niche. Germ line stem cells lost by normal or induced differentiation are efficiently replaced, and the ability to repopulate the niche increases the functional lifetime of ovarioles in vivo. Our studies implicate one of the somatic cell types, the cap cells, as a key niche component.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, T -- Spradling, A C -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2000 Oct 13;290(5490):328-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, MD 21210, USA. tgx@stowers-institute.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11030649" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Cell Communication ; Cell Differentiation ; Drosophila/*cytology/physiology ; Female ; Germ Cells/*cytology/physiology ; Intercellular Junctions/physiology ; Models, Biological ; Mutation ; Oocytes/*cytology/physiology ; Ovary/cytology ; Stem Cells/*cytology/physiology ; Stromal Cells/cytology/physiology ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-09-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, H -- Kinzler, K W -- Vogelstein, B -- New York, N.Y. -- Science. 2000 Sep 15;289(5486):1890-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and the Johns Hopkins Oncology Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11012364" target="_blank"〉PubMed〈/a〉
    Keywords: Genetic Techniques ; *Genetic Testing/methods ; *Genetics, Medical/trends ; Humans ; Mutation ; Sociology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2000-07-06
    Description: A conserved domain in the extracellular region of the 60- and 80-kilodalton tumor necrosis factor receptors (TNFRs) was identified that mediates specific ligand-independent assembly of receptor trimers. This pre-ligand-binding assembly domain (PLAD) is physically distinct from the domain that forms the major contacts with ligand, but is necessary and sufficient for the assembly of TNFR complexes that bind TNF-alpha and mediate signaling. Other members of the TNFR superfamily, including TRAIL receptor 1 and CD40, show similar homotypic association. Thus, TNFRs and related receptors appear to function as preformed complexes rather than as individual receptor subunits that oligomerize after ligand binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chan, F K -- Chun, H J -- Zheng, L -- Siegel, R M -- Bui, K L -- Lenardo, M J -- New York, N.Y. -- Science. 2000 Jun 30;288(5475):2351-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10875917" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Antigens, CD/chemistry/metabolism ; Apoptosis ; Binding Sites ; Cross-Linking Reagents ; Dimerization ; Energy Transfer ; Fluorescence ; Humans ; Ligands ; Macromolecular Substances ; Mutation ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Tumor Necrosis Factor/*chemistry/*metabolism ; Receptors, Tumor Necrosis Factor, Type I ; Receptors, Tumor Necrosis Factor, Type II ; Recombinant Fusion Proteins/chemistry/metabolism ; *Signal Transduction ; Succinimides ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2000-11-25
    Description: We generated a mutant of the red fluorescent protein drFP583. The mutant (E5) changes its fluorescence from green to red over time. The rate of color conversion is independent of protein concentration and therefore can be used to trace time-dependent expression. We used in vivo labeling with E5 to measure expression from the heat shock-dependent promoter in Caenorhabditis elegans and from the Otx-2 promoter in developing Xenopus embryos. Thus, E5 is a "fluorescent timer" that can be used to monitor both activation and down-regulation of target promoters on the whole-organism scale.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Terskikh, A -- Fradkov, A -- Ermakova, G -- Zaraisky, A -- Tan, P -- Kajava, A V -- Zhao, X -- Lukyanov, S -- Matz, M -- Kim, S -- Weissman, I -- Siebert, P -- 1 RO3 TW01362-01/TW/FIC NIH HHS/ -- New York, N.Y. -- Science. 2000 Nov 24;290(5496):1585-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Medicine, Stanford University, Stanford, CA 94305, USA. Alexey.Terskikh@Stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11090358" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/embryology/metabolism ; Caenorhabditis elegans/embryology/genetics ; Cell Line ; Color ; Fluorescence ; Gene Expression Profiling/*methods ; *Gene Expression Regulation ; Gene Expression Regulation, Developmental ; Heat-Shock Proteins/genetics ; *Homeodomain Proteins ; Humans ; Luminescent Proteins/*chemistry/*genetics/metabolism ; Mutation ; Nerve Tissue Proteins/genetics ; Otx Transcription Factors ; *Promoter Regions, Genetic ; Temperature ; Time Factors ; Trans-Activators/genetics ; Xenopus laevis/embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2000-03-10
    Description: The 2,272,351-base pair genome of Neisseria meningitidis strain MC58 (serogroup B), a causative agent of meningitis and septicemia, contains 2158 predicted coding regions, 1158 (53.7%) of which were assigned a biological role. Three major islands of horizontal DNA transfer were identified; two of these contain genes encoding proteins involved in pathogenicity, and the third island contains coding sequences only for hypothetical proteins. Insights into the commensal and virulence behavior of N. meningitidis can be gleaned from the genome, in which sequences for structural proteins of the pilus are clustered and several coding regions unique to serogroup B capsular polysaccharide synthesis can be identified. Finally, N. meningitidis contains more genes that undergo phase variation than any pathogen studied to date, a mechanism that controls their expression and contributes to the evasion of the host immune system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tettelin, H -- Saunders, N J -- Heidelberg, J -- Jeffries, A C -- Nelson, K E -- Eisen, J A -- Ketchum, K A -- Hood, D W -- Peden, J F -- Dodson, R J -- Nelson, W C -- Gwinn, M L -- DeBoy, R -- Peterson, J D -- Hickey, E K -- Haft, D H -- Salzberg, S L -- White, O -- Fleischmann, R D -- Dougherty, B A -- Mason, T -- Ciecko, A -- Parksey, D S -- Blair, E -- Cittone, H -- Clark, E B -- Cotton, M D -- Utterback, T R -- Khouri, H -- Qin, H -- Vamathevan, J -- Gill, J -- Scarlato, V -- Masignani, V -- Pizza, M -- Grandi, G -- Sun, L -- Smith, H O -- Fraser, C M -- Moxon, E R -- Rappuoli, R -- Venter, J C -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1809-15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710307" target="_blank"〉PubMed〈/a〉
    Keywords: Antigenic Variation ; Antigens, Bacterial/immunology ; Bacteremia/microbiology ; Bacterial Capsules/genetics ; Bacterial Proteins/genetics/physiology ; DNA Transposable Elements ; Evolution, Molecular ; Fimbriae, Bacterial/genetics ; *Genome, Bacterial ; Humans ; Meningitis, Meningococcal/microbiology ; Meningococcal Infections/microbiology ; Molecular Sequence Data ; Mutation ; Neisseria meningitidis/classification/*genetics/*pathogenicity/physiology ; Open Reading Frames ; Operon ; Phylogeny ; Recombination, Genetic ; *Sequence Analysis, DNA ; Serotyping ; Transformation, Bacterial ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: RNA editing is a fascinating phenomenon that is found in both animal and plant cells. By converting an adenosine base to an inosine (which behaves like guanosine) in RNA that has already been transcribed, certain RNA sequences (and hence the amino acids they encode) are altered. In a Perspective, Keegan, Gallo and O'Connell explore new results showing that activity of the editing enzyme ADAR1 is crucial for normal development of red blood cells in mouse embryos.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keegan, L P -- Gallo, A -- O'Connell, M A -- New York, N.Y. -- Science. 2000 Dec 1;290(5497):1707-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK. liam.keegan@hgu.mrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11186391" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/metabolism ; Adenosine Deaminase/chemistry/*genetics/*metabolism ; Animals ; Base Pairing ; Central Nervous System/metabolism ; Chimera ; Drosophila/genetics/metabolism ; Embryo, Mammalian/cytology ; Embryo, Nonmammalian ; *Erythropoiesis ; Gene Dosage ; Hematopoietic Stem Cells/cytology/enzymology ; Inosine/metabolism ; Liver/metabolism ; Mice ; Mutation ; Phenotype ; Protein Structure, Tertiary ; *RNA Editing ; RNA Precursors/metabolism ; RNA, Double-Stranded/metabolism ; RNA-Binding Proteins ; Receptors, AMPA/genetics ; Stem Cells/cytology/enzymology ; Teratoma/genetics/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2000-08-05
    Description: The circadian oscillator of the cyanobacterium Synechococcus elongatus, like those in eukaryotes, is entrained by environmental cues. Inactivation of the gene cikA (circadian input kinase) shortens the circadian period of gene expression rhythms in S. elongatus by approximately 2 hours, changes the phasing of a subset of rhythms, and nearly abolishes resetting of phase by a pulse of darkness. The CikA protein sequence reveals that it is a divergent bacteriophytochrome with characteristic histidine protein kinase motifs and a cryptic response regulator motif. CikA is likely a key component of a pathway that provides environmental input to the circadian oscillator in S. elongatus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmitz, O -- Katayama, M -- Williams, S B -- Kondo, T -- Golden, S S -- GM37040/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 4;289(5480):765-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10926536" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Motifs ; Amino Acid Sequence ; *Bacterial Proteins ; *Biological Clocks/genetics/physiology ; *Circadian Rhythm/genetics/physiology ; Cyanobacteria/genetics/*physiology ; Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Genes, Reporter ; Luminescent Measurements ; Molecular Sequence Data ; Mutation ; Phenotype ; Protein Kinases/chemistry/*genetics/physiology ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2000-08-26
    Description: Polyadenylate [poly(A)] polymerase (PAP) catalyzes the addition of a polyadenosine tail to almost all eukaryotic messenger RNAs (mRNAs). The crystal structure of the PAP from Saccharomyces cerevisiae (Pap1) has been solved to 2.6 angstroms, both alone and in complex with 3'-deoxyadenosine triphosphate (3'-dATP). Like other nucleic acid polymerases, Pap1 is composed of three domains that encircle the active site. The arrangement of these domains, however, is quite different from that seen in polymerases that use a template to select and position their incoming nucleotides. The first two domains are functionally analogous to polymerase palm and fingers domains. The third domain is attached to the fingers domain and is known to interact with the single-stranded RNA primer. In the nucleotide complex, two molecules of 3'-dATP are bound to Pap1. One occupies the position of the incoming base, prior to its addition to the mRNA chain. The other is believed to occupy the position of the 3' end of the mRNA primer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bard, J -- Zhelkovsky, A M -- Helmling, S -- Earnest, T N -- Moore, C L -- Bohm, A -- R01 GM57218-01A2/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 25;289(5483):1346-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10958780" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Deoxyadenine Nucleotides/*chemistry/*metabolism ; Hydrogen Bonding ; Manganese/metabolism ; Models, Molecular ; Mutation ; Polynucleotide Adenylyltransferase/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/metabolism ; RNA, Messenger/metabolism ; Ribosomal Protein S6 ; Ribosomal Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2000-11-25
    Description: The endoplasmic reticulum (ER) supports disulfide bond formation by a poorly understood mechanism requiring protein disulfide isomerase (PDI) and ERO1. In yeast, Ero1p-mediated oxidative folding was shown to depend on cellular flavin adenine dinucleotide (FAD) levels but not on ubiquinone or heme, and Ero1p was shown to be a FAD-binding protein. We reconstituted efficient oxidative folding in vitro using FAD, PDI, and Ero1p. Disulfide formation proceeded by direct delivery of oxidizing equivalents from Ero1p to folding substrates via PDI. This kinetic shuttling of oxidizing equivalents could allow the ER to support rapid disulfide formation while maintaining the ability to reduce and rearrange incorrect disulfide bonds.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tu, B P -- Ho-Schleyer, S C -- Travers, K J -- Weissman, J S -- New York, N.Y. -- Science. 2000 Nov 24;290(5496):1571-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11090354" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carboxypeptidases/chemistry/metabolism ; Cathepsin A ; Chemistry, Physical ; Disulfides/chemistry ; Endoplasmic Reticulum/*metabolism ; Flavin-Adenine Dinucleotide/*metabolism ; Glutathione/metabolism ; Glycoproteins/*metabolism ; Microsomes/metabolism ; Mutation ; Oxidation-Reduction ; Oxidoreductases Acting on Sulfur Group Donors ; Physicochemical Phenomena ; Protein Disulfide-Isomerases/genetics/*metabolism ; *Protein Folding ; Ribonuclease, Pancreatic/chemistry/metabolism ; Saccharomyces cerevisiae/metabolism ; *Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noselli, S -- Perrimon, N -- New York, N.Y. -- Science. 2000 Oct 6;290(5489):68-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Recherches, UMR 65643-CNRS, Parc Valrose 06108, Nice cedex 2 France. noselli@unice.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11183153" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila/genetics/metabolism ; Gene Expression Profiling ; Humans ; Mutation ; Neoplasms/genetics/metabolism ; Phenotype ; *Receptor Cross-Talk ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-06-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 2000 May 12;288(5468):943-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10841707" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Biological Clocks/genetics/*physiology ; CLOCK Proteins ; Cell Cycle Proteins ; Cell Nucleus/metabolism ; Circadian Rhythm/genetics/*physiology ; Cryptochromes ; Drosophila/metabolism ; *Drosophila Proteins ; *Eye Proteins ; Feedback ; Flavoproteins/genetics/*metabolism ; *Gene Expression Regulation ; Mice ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Period Circadian Proteins ; *Photoreceptor Cells, Invertebrate ; Receptors, G-Protein-Coupled ; Trans-Activators/genetics/metabolism ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: A flurry of findings points to protein translation in the dendrites of neurons as a key feature leading to the changes at synapses that are vital to learning (see main text). And one recent discovery suggests that when this translation goes awry, it can lead to mental retardation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 2000 Oct 27;290(5492):737.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11184206" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dendrites/*metabolism ; Fragile X Mental Retardation Protein ; Fragile X Syndrome/etiology/genetics/metabolism ; Humans ; Intellectual Disability/*etiology/genetics/metabolism ; Mice ; Mutation ; Nerve Tissue Proteins/*genetics/metabolism ; *Protein Biosynthesis ; *RNA-Binding Proteins ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-05-08
    Description: The telomerase ribonucleoprotein has a phylogenetically divergent RNA subunit, which contains a short template for telomeric DNA synthesis. To understand how telomerase RNA participates in mechanistic aspects of telomere synthesis, we studied a conserved secondary structure adjacent to the template. Disruption of this structure caused DNA synthesis to proceed beyond the normal template boundary, resulting in altered telomere sequences, telomere shortening, and cellular growth defects. Compensatory mutations restored normal telomerase function. Thus, the RNA structure, rather than its sequence, specifies the template boundary. This study reveals a specific function for an RNA structure in the enzymatic action of telomerase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tzfati, Y -- Fulton, T B -- Roy, J -- Blackburn, E H -- GM26259/GM/NIGMS NIH HHS/ -- T32CA09270/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 May 5;288(5467):863-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0414, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10797010" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Cloning, Molecular ; DNA, Fungal/biosynthesis ; Genes, Fungal ; Kluyveromyces/*enzymology/genetics ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; RNA, Fungal/*chemistry/genetics/*metabolism ; Telomerase/*chemistry/genetics/*metabolism ; Telomere/genetics/metabolism ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-21
    Description: We describe a single RNA sequence that can assume either of two ribozyme folds and catalyze the two respective reactions. The two ribozyme folds share no evolutionary history and are completely different, with no base pairs (and probably no hydrogen bonds) in common. Minor variants of this sequence are highly active for one or the other reaction, and can be accessed from prototype ribozymes through a series of neutral mutations. Thus, in the course of evolution, new RNA folds could arise from preexisting folds, without the need to carry inactive intermediate sequences. This raises the possibility that biological RNAs having no structural or functional similarity might share a common ancestry. Furthermore, functional and structural divergence might, in some cases, precede rather than follow gene duplication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schultes, E A -- Bartel, D P -- New York, N.Y. -- Science. 2000 Jul 21;289(5478):448-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10903205" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Catalysis ; Evolution, Molecular ; Gene Duplication ; Hepatitis Delta Virus/enzymology/genetics ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Point Mutation ; RNA/metabolism ; RNA, Catalytic/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2001-02-07
    Description: Atomic force microscopy and single-molecule force spectroscopy were combined to image and manipulate purple membrane patches from Halobacterium salinarum. Individual bacteriorhodopsin molecules were first localized and then extracted from the membrane; the remaining vacancies were imaged again. Anchoring forces between 100 and 200 piconewtons for the different helices were found. Upon extraction, the helices were found to unfold. The force spectra revealed the individuality of the unfolding pathways. Helices G and F as well as helices E and D always unfolded pairwise, whereas helices B and C occasionally unfolded one after the other. Experiments with cleaved loops revealed the origin of the individuality: stabilization of helix B by neighboring helices.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oesterhelt, F -- Oesterhelt, D -- Pfeiffer, M -- Engel, A -- Gaub, H E -- Muller, D J -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):143-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CeNS and Lehrstuhl fur angewandte Physik, Ludwig Maximilians-Universitat Munchen, Amalienstrasse 54, 80799 Munchen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10753119" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriorhodopsins/*chemistry/genetics ; Cysteine/chemistry ; Halobacterium salinarum/*chemistry ; Membrane Proteins/*chemistry/genetics ; *Microscopy, Atomic Force ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Denaturation ; *Protein Folding ; Protein Structure, Secondary ; Purple Membrane/*chemistry ; Serine Endopeptidases/metabolism ; Spectrum Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-15
    Description: Working out how organs form during embryonic development is a fascinating area of research. In a witty Perspective, Jeff Hardin describes new findings (Nishiwaki et al.) that reveal the many intricate steps needed for gonads to form in the worm C. elegans. Two key players, GON-1 and MIG-17, are metalloproteases that may help migration of distal tip cells by degrading extracellular matrix components.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hardin, J -- New York, N.Y. -- Science. 2000 Jun 23;288(5474):2142-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology and Program in Cellular and Molecular Biology, University of Wisconsin, 1117 West Johnson Street, Madison, WI 53706, USA. jdhardin@facstaff.wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10896589" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/cytology/*enzymology/genetics/growth & development ; *Caenorhabditis elegans Proteins ; Cell Movement ; Disintegrins/chemistry/genetics/*metabolism ; Extracellular Matrix/*metabolism ; Gene Expression Regulation, Developmental ; Genes, Helminth ; Gonads/cytology/growth & development/metabolism ; Larva/cytology/enzymology/growth & development ; Metalloendopeptidases/chemistry/genetics/*metabolism ; Morphogenesis ; Muscles/cytology/enzymology ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2453.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752547" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/physiology ; Circadian Rhythm/drug effects/*physiology ; Cricetinae ; Darkness ; Hypothalamus/*metabolism ; Light ; Mice ; *Motor Activity/drug effects ; Mutation ; Neurons/*metabolism ; Receptor, Epidermal Growth Factor/genetics/*metabolism ; Retinal Ganglion Cells/metabolism ; Signal Transduction ; Suprachiasmatic Nucleus/*metabolism ; Transforming Growth Factor alpha/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-02-26
    Description: Spider flagelliform silk is one of the most elastic natural materials known. Extensive sequencing of spider silk genes has shown that the exons and introns of the flagelliform gene underwent intragenic concerted evolution. The intron sequences are more homogenized within a species than are the exons. This pattern can be explained by extreme mutation and recombination pressures on the internally repetitive exons. The iterated sequences within exons encode protein structures that are critical to the function of silks. Therefore, attributes that make silks exceptional biomaterials may also hinder the fixation of optimally adapted protein sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayashi, C Y -- Lewis, R V -- New York, N.Y. -- Science. 2000 Feb 25;287(5457):1477-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Wyoming, Laramie, WY 82071-3944, USA. hayashi@uwyo.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10688794" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Base Sequence ; Crossing Over, Genetic ; DNA/genetics ; DNA Replication ; *Evolution, Molecular ; *Exons ; Gene Conversion ; *Genes ; *Introns ; Molecular Sequence Data ; Mutation ; Proteins/chemistry/*genetics ; Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; Selection, Genetic ; Species Specificity ; Spiders/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2001-11-03
    Description: SNAREs (soluble NSF-attachment protein receptors) are generally acknowledged as central components of membrane fusion reactions, but their precise function has remained enigmatic. Competing hypotheses suggest roles for SNAREs in mediating the specificity of fusion, catalyzing fusion, or actually executing fusion. We generated knockout mice lacking synaptobrevin/VAMP 2, the vesicular SNARE protein responsible for synaptic vesicle fusion in forebrain synapses, to make use of the exquisite temporal resolution of electrophysiology in measuring fusion. In the absence of synaptobrevin 2, spontaneous synaptic vesicle fusion and fusion induced by hypertonic sucrose were decreased approximately 10-fold, but fast Ca2+-triggered fusion was decreased more than 100-fold. Thus, synaptobrevin 2 may function in catalyzing fusion reactions and stabilizing fusion intermediates but is not absolutely required for synaptic fusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schoch, S -- Deak, F -- Konigstorfer, A -- Mozhayeva, M -- Sara, Y -- Sudhof, T C -- Kavalali, E T -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1117-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Basic Neuroscience, Department of Molecular Genetics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691998" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Calcium/metabolism/pharmacology ; Cells, Cultured ; Hypertonic Solutions ; *Membrane Fusion ; Membrane Proteins/genetics/*physiology ; Mice ; Mice, Knockout ; Mutation ; Patch-Clamp Techniques ; Potassium/pharmacology ; Presynaptic Terminals/physiology ; Prosencephalon/physiology ; R-SNARE Proteins ; SNARE Proteins ; Sucrose/pharmacology ; Synapses/*physiology ; Synaptic Transmission ; Synaptic Vesicles/*physiology ; *Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-03
    Description: The mushroom bodies, substructures of the Drosophila brain, are involved in olfactory learning and short-term memory, but their role in long-term memory is unknown. Here we show that the alpha-lobes-absent (ala) mutant lacks either the two vertical lobes of the mushroom body or two of the three median lobes which contain branches of vertical lobe neurons. This unique phenotype allows analysis of mushroom body function. Long-term memory required the presence of the vertical lobes but not the median lobes. Short-term memory was normal in flies without either vertical lobes or the two median lobes studied.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pascual, A -- Preat, T -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1115-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developpement, Evolution, Plasticite du Systeme Nerveux, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691997" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Conditioning (Psychology) ; Dendrites/physiology ; Drosophila/genetics/*physiology ; Electroshock ; Genes, Insect ; Memory/*physiology ; Memory, Short-Term/physiology ; Microscopy, Confocal ; Mushroom Bodies/anatomy & histology/*physiology ; Mutation ; Neurons, Efferent/physiology ; Odors ; Phenotype
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2001-04-17
    Description: A critical step in the infectious cycle of Leishmania is the differentiation of parasites within the sand fly vector to the highly infective metacyclic promastigote stage. Here, we establish tetrahydrobiopterin (H4B) levels as an important factor controlling the extent of metacyclogenesis. H4B levels decline substantially during normal development, and genetic or nutritional manipulations showed that low H4B caused elevated metacyclogenesis. Mutants lacking pteridine reductase 1 (PTR1) had low levels of H4B, remained infectious to mice, and induced larger cutaneous lesions (hypervirulence). Thus, the control of pteridine metabolism has relevance to the mechanism of Leishmania differentiation and the limitation of virulence during evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, M L -- Titus, R G -- Turco, S J -- Beverley, S M -- AI21903/AI/NIAID NIH HHS/ -- AI31078/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Apr 13;292(5515):285-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11303103" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biopterin/*analogs & derivatives/*metabolism/pharmacology ; Carrier Proteins/genetics/metabolism ; Chromatography, High Pressure Liquid ; Folic Acid/metabolism ; Genes, Protozoan ; Glycosphingolipids/analysis ; Leishmania major/genetics/*growth & development/*metabolism/pathogenicity ; Leishmaniasis, Cutaneous/*parasitology ; *Membrane Transport Proteins ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Oxidoreductases/genetics/metabolism ; *Protozoan Proteins ; Signal Transduction ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-04-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pellman, D -- New York, N.Y. -- Science. 2001 Mar 30;291(5513):2555-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Pediatric Hematology/Oncology, Children's Hospital, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA. david_pellman@dfci.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11286276" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Aneuploidy ; Animals ; Cell Transformation, Neoplastic ; Cells, Cultured ; Chromosome Aberrations ; Chromosome Segregation ; Chromosomes/*physiology ; Colonic Neoplasms/*genetics/metabolism/pathology ; Cytoskeletal Proteins/chemistry/*metabolism ; *Genes, APC ; Humans ; Kinetochores/*metabolism ; Mice ; Microtubule-Associated Proteins/metabolism ; Microtubules/*metabolism ; Mitosis ; Mutation ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases ; Spindle Apparatus/metabolism ; Stem Cells/cytology/metabolism ; *Trans-Activators ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peltonen, L -- McKusick, V A -- New York, N.Y. -- Science. 2001 Feb 16;291(5507):1224-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of California Los Angeles School of Medicine, Los Angeles, CA 90095-7088, USA. lpeltonen@mednet.ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11233446" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Computational Biology ; Delivery of Health Care ; *Disease ; Environment ; Gene Expression Profiling ; *Genetic Diseases, Inborn ; Genetic Predisposition to Disease ; Genetic Testing ; Genetic Variation ; *Genetics, Medical ; Genome ; *Genome, Human ; *Genomics ; Human Genome Project ; Humans ; Metabolic Diseases/genetics ; Multifactorial Inheritance ; Mutation ; Phenotype ; Polymorphism, Single Nucleotide ; Quantitative Trait, Heritable ; Risk Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-03
    Description: How does human immunodeficiency virus (HIV) gain access to the carefully guarded nucleus of the host cell? In a Perspective, Segura-Totten and Wilson elaborate on new findings (de Noronha et al.) showing that the HIV protein Vpr is crucial for causing transient herniations in the host cell nuclear envelope. These ruptures are sufficient to enable the preintegration complexes of invading virions to enter the nucleus and to integrate with host cell DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Segura-Totten, M -- Wilson, K L -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1016-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691977" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Nucleus/*metabolism/*virology ; Chromatin/metabolism ; DNA-Binding Proteins/metabolism ; G2 Phase ; Gene Products, vpr/genetics/*metabolism ; HIV/*physiology ; HeLa Cells ; Humans ; Lamins ; Membrane Proteins/metabolism ; Mutation ; Nuclear Envelope/*metabolism/ultrastructure ; Nuclear Proteins/metabolism ; Phosphorylation ; Thymopoietins/metabolism ; *Virus Integration ; vpr Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2001-03-17
    Description: Chloroplasts relocate their positions in a cell in response to the intensity of incident light, moving to the side wall of the cell to avoid strong light, but gathering at the front face under weak light to maximize light interception. Here, Arabidopsis thaliana mutants defective in the avoidance response were isolated, and the mutated gene was identified as NPL1 (NPH-like 1), a homolog of NPH1 (nonphototropic hypocotyl 1), a blue light receptor used in phototropism. Hence, NPL1 is likely a blue light receptor regulating the avoidance response under strong light.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kagawa, T -- Sakai, T -- Suetsugu, N -- Oikawa, K -- Ishiguro, S -- Kato, T -- Tabata, S -- Okada, K -- Wada, M -- New York, N.Y. -- Science. 2001 Mar 16;291(5511):2138-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉"Unit Process and Combined Circuit," PRESTO, Japan Science and Technology Corporation, 1-8, Honcho 4-chome, Kawaguchi-city, Saitama 332-0012, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11251116" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/genetics/*physiology/ultrastructure ; *Arabidopsis Proteins ; Cell Membrane/metabolism ; Chloroplasts/*physiology ; Genes, Plant ; *Light ; Movement ; Mutation ; Phosphoproteins/chemistry/physiology ; Phototropism ; Plant Leaves/metabolism ; Plant Proteins/chemistry/*genetics/*physiology ; Plant Structures/metabolism ; Protein Structure, Tertiary ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-17
    Description: We studied the underlying neural mechanism of a simple choice behavior between competing alternatives in Drosophila. In a flight simulator, individual flies were conditioned to choose one of two flight paths in response to color and shape cues; after the training, they were tested with contradictory cues. Wild-type flies made a discrete choice that switched from one alternative to the other as the relative salience of color and shape cues gradually changed, but this ability was greatly diminished in mutant (mbm1) flies with miniature mushroom bodies or with hydroxyurea ablation of mushroom bodies. Thus, Drosophila genetics may be useful for elucidating the neural basis of choice behavior.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, S -- Guo, A -- New York, N.Y. -- Science. 2001 Nov 16;294(5546):1543-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuroscience, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11711680" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Animal ; *Choice Behavior ; Color ; Color Perception ; Conditioning (Psychology) ; *Cues ; Drosophila/genetics/*physiology ; Flight, Animal ; Form Perception ; Hot Temperature ; Hydroxyurea/pharmacology ; Learning ; Memory ; Mushroom Bodies/drug effects/*physiology ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2001-08-25
    Description: beta-Amyloid plaques and neurofibrillary tangles (NFTs) are the defining neuropathological hallmarks of Alzheimer's disease, but their pathophysiological relation is unclear. Injection of beta-amyloid Abeta42 fibrils into the brains of P301L mutant tau transgenic mice caused fivefold increases in the numbers of NFTs in cell bodies within the amygdala from where neurons project to the injection sites. Gallyas silver impregnation identified NFTs that contained tau phosphorylated at serine 212/threonine 214 and serine 422. NFTs were composed of twisted filaments and occurred in 6-month-old mice as early as 18 days after Abeta42 injections. Our data support the hypothesis that Abeta42 fibrils can accelerate NFT formation in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gotz, J -- Chen, F -- van Dorpe, J -- Nitsch, R M -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1491-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Psychiatry Research, University of Zurich, August Forel Strasse 1, 8008 Zurich, Switzerland. goetz@bli.unizh.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520988" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; Alzheimer Disease/metabolism/*pathology ; Amygdala/*pathology ; Amyloid beta-Peptides/administration & dosage/*metabolism ; Animals ; Brain/*pathology ; Epitopes ; Female ; Fluorescent Antibody Technique ; Humans ; Male ; Mice ; Mice, Transgenic ; Microscopy, Immunoelectron ; Mutation ; Neurofibrillary Tangles/*metabolism/pathology ; Peptide Fragments/administration & dosage/*metabolism ; Phosphorylation ; Plaque, Amyloid/*metabolism/pathology ; Protein Conformation ; Protein Isoforms ; Sex Characteristics ; tau Proteins/chemistry/genetics/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2001-06-09
    Description: The p53 protein is present in low amounts in normally growing cells and is activated in response to physiological insults. MDM2 regulates p53 either through inhibiting p53's transactivating function in the nucleus or by targeting p53 degradation in the cytoplasm. We identified a previously unknown nuclear export signal (NES) in the amino terminus of p53, spanning residues 11 to 27 and containing two serine residues phosphorylated after DNA damage, which was required for p53 nuclear export in colloboration with the carboxyl-terminal NES. Serine-15-phosphorylated p53 induced by ultraviolet irradiation was not exported. Thus, DNA damage-induced phosphorylation may achieve optimal p53 activation by inhibiting both MDM2 binding to, and the nuclear export of, p53.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Y -- Xiong, Y -- CA65572/CA/NCI NIH HHS/ -- K01 CA087580/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1910-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, and Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11397945" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Animals ; Cell Fusion ; Cell Line ; Cell Nucleus/*metabolism ; Cells, Cultured ; Cytoplasm/metabolism ; *DNA Damage ; Mice ; Molecular Sequence Data ; Mutation ; *Nuclear Proteins ; Phosphorylation ; Phosphoserine/metabolism ; *Protein Sorting Signals ; Protein Structure, Tertiary ; Proteins/genetics/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-mdm2 ; Recombinant Fusion Proteins/metabolism ; Transfection ; Tumor Suppressor Protein p14ARF ; Tumor Suppressor Protein p53/*chemistry/genetics/*metabolism ; Ubiquitins/metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 2001 Apr 20;292(5516):426-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11330289" target="_blank"〉PubMed〈/a〉
    Keywords: *Aneuploidy ; Animals ; Antigens/metabolism ; Aurora Kinases ; *CDC2-CDC28 Kinases ; Cell Division ; Cell Transformation, Neoplastic ; Centrosome/*physiology/ultrastructure ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/metabolism ; Genes, p53 ; Humans ; Mitosis ; Mutation ; Neoplasms/*etiology/genetics/pathology ; Protein-Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2001-03-27
    Description: During its development, a plant shoot progresses from a juvenile to an adult phase of vegetative growth and from a reproductively incompetent to a reproductively competent state. In Arabidopsis, loss-of-function mutations in SQUINT (SQN) reduced the number of juvenile leaves and had subtle effects on inflorescence morphology but had no effect on flowering time or on reproductive competence. SQN encodes the Arabidopsis homolog of cyclophilin 40 (CyP40), a protein found in association with the Hsp90 chaperone complex in yeast, mammals, and plants. Thus, in Arabidopsis, CyP40 is specifically required for the vegetative but not the reproductive maturation of the shoot.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berardini, T Z -- Bollman, K -- Sun, H -- Poethig, R S -- R01-GM1893-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2405-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA. spoethig@sas.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264535" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/anatomy & histology/*genetics/*growth & development/physiology ; Carrier Proteins/chemistry/genetics/physiology ; Chromosome Mapping ; *Cyclophilins ; Exons ; Gene Expression Regulation, Plant ; Genes, Plant ; Heat-Shock Proteins/genetics ; Molecular Sequence Data ; Mutation ; Peptidylprolyl Isomerase/chemistry/genetics/physiology ; Phenotype ; Plant Leaves/anatomy & histology/growth & development ; Plant Shoots/growth & development/physiology ; Reproduction ; Sequence Alignment ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2001-08-04
    Description: The development of resistance is the main threat to the long-term use of toxins from Bacillus thuringiensis (Bt) in transgenic plants. Here we report the cloning of a Bt toxin resistance gene, Caenorhabditis elegans bre-5, which encodes a putative beta-1,3-galactosyltransferase. Lack of bre-5 in the intestine led to resistance to the Bt toxin Cry5B. Wild-type but not bre-5 mutant animals were found to uptake toxin into their gut cells, consistent with bre-5 mutants lacking toxin-binding sites on their apical gut. bre-5 mutants displayed resistance to Cry14A, a Bt toxin lethal to both nematodes and insects; this indicates that resistance by loss of carbohydrate modification is relevant to multiple Bt toxins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Griffitts, J S -- Whitacre, J L -- Stevens, D E -- Aroian, R V -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):860-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486087" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacterial Proteins/metabolism/*toxicity ; *Bacterial Toxins ; Biological Transport ; Caenorhabditis elegans/enzymology/*genetics/metabolism ; *Caenorhabditis elegans Proteins ; Cloning, Molecular ; Digestive System/enzymology/metabolism ; Disorders of Sex Development ; Drug Resistance/genetics ; Endocytosis ; Endotoxins/metabolism/*toxicity ; Feeding Behavior ; Galactosyltransferases/chemistry/*genetics/*metabolism ; Genes, Helminth ; Hemolysin Proteins ; *Insect Proteins ; Molecular Sequence Data ; Mosaicism ; Mutation ; *Pest Control, Biological ; Receptors, Cell Surface/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2001-08-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Temple, L K -- McLeod, R S -- Gallinger, S -- Wright, J G -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):807-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, University of Toronto, Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, ON, Canada M5G 1X5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486074" target="_blank"〉PubMed〈/a〉
    Keywords: Diagnosis ; *Disease/etiology ; *Genetic Predisposition to Disease ; Genetic Research ; *Genetic Variation ; *Genome, Human ; *Genomics ; Genotype ; Humans ; Mutation ; Phenotype ; Polymorphism, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2001-09-29
    Description: The embryonic role of endothelial cells and nascent vessels in promoting organogenesis, prior to vascular function, is unclear. We find that early endothelial cells in mouse embryos surround newly specified hepatic endoderm and delimit the mesenchymal domain into which the liver bud grows. In flk-1 mutant embryos, which lack endothelial cells, hepatic specification occurs, but liver morphogenesis fails prior to mesenchyme invasion. We developed an embryo tissue explant system that permits liver bud vasculogenesis and show that in the absence of endothelial cells, or when the latter are inhibited, there is a selective defect in hepatic outgrowth. We conclude that vasculogenic endothelial cells and nascent vessels are critical for the earliest stages of organogenesis, prior to blood vessel function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsumoto, K -- Yoshitomi, H -- Rossant, J -- Zaret, K S -- CA06297/CA/NCI NIH HHS/ -- GM36477/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 19;294(5542):559-63. Epub 2001 Sep 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell and Developmental Biology Program, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11577199" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Vessels/cytology/embryology/physiology ; Culture Techniques ; *Embryonic Induction ; Endoderm/*physiology ; Endothelium, Vascular/cytology/embryology/*physiology ; Female ; Hepatocyte Growth Factor/antagonists & inhibitors/metabolism/pharmacology ; Hepatocytes/physiology ; Liver/blood supply/cytology/drug effects/*embryology ; Male ; Mesoderm/physiology ; Mice ; Mice, Inbred C3H ; *Mitogens ; Morphogenesis ; Mutation ; Neovascularization, Physiologic ; Receptor Protein-Tyrosine Kinases/genetics/physiology ; Receptors, Growth Factor/genetics/physiology ; Receptors, Vascular Endothelial Growth Factor ; Signal Transduction/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2001-06-02
    Description: The GGAs are a multidomain protein family implicated in protein trafficking between the Golgi and endosomes. Here, the VHS domain of GGA2 was shown to bind to the acidic cluster-dileucine motif in the cytoplasmic tail of the cation-independent mannose 6-phosphate receptor (CI-MPR). Receptors with mutations in this motif were defective in lysosomal enzyme sorting. The hinge domain of GGA2 bound clathrin, suggesting that GGA2 could be a link between cargo molecules and clathrin-coated vesicle assembly. Thus, GGA2 binding to the CI-MPR is important for lysosomal enzyme targeting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, Y -- Doray, B -- Poussu, A -- Lehto, V P -- Kornfeld, S -- R01 CA-08759/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 1;292(5522):1716-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11387476" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; *Carrier Proteins ; Cations ; Clathrin/metabolism ; Dipeptides/chemistry/metabolism ; L Cells (Cell Line) ; Lysosomes/*enzymology ; Mice ; Molecular Sequence Data ; Mutation ; Protein Sorting Signals ; Protein Structure, Tertiary ; *Protein Transport ; Proteins/chemistry/genetics/*metabolism ; Rats ; Receptor, IGF Type 2/*chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Solubility ; Transcription Factor AP-1/metabolism ; Transport Vesicles/metabolism ; Two-Hybrid System Techniques ; trans-Golgi Network/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2001-06-16
    Description: Huntingtin is a 350-kilodalton protein of unknown function that is mutated in Huntington's disease (HD), a neurodegenerative disorder. The mutant protein is presumed to acquire a toxic gain of function that is detrimental to striatal neurons in the brain. However, loss of a beneficial activity of wild-type huntingtin may also cause the death of striatal neurons. Here we demonstrate that wild-type huntingtin up-regulates transcription of brain-derived neurotrophic factor (BDNF), a pro-survival factor produced by cortical neurons that is necessary for survival of striatal neurons in the brain. We show that this beneficial activity of huntingtin is lost when the protein becomes mutated, resulting in decreased production of cortical BDNF. This leads to insufficient neurotrophic support for striatal neurons, which then die. Restoring wild-type huntingtin activity and increasing BDNF production may be therapeutic approaches for treating HD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuccato, C -- Ciammola, A -- Rigamonti, D -- Leavitt, B R -- Goffredo, D -- Conti, L -- MacDonald, M E -- Friedlander, R M -- Silani, V -- Hayden, M R -- Timmusk, T -- Sipione, S -- Cattaneo, E -- E.0840/Telethon/Italy -- New York, N.Y. -- Science. 2001 Jul 20;293(5529):493-8. Epub 2001 Jun 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacological Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11408619" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Apoptosis ; Brain-Derived Neurotrophic Factor/biosynthesis/*genetics/metabolism ; Cell Survival ; Cells, Cultured ; Cerebral Cortex/cytology/*metabolism ; Corpus Striatum/cytology/*metabolism/pathology ; Exons ; Hippocampus/cytology/metabolism/pathology ; Humans ; Huntington Disease/*genetics/metabolism/pathology ; Mice ; Mice, Transgenic ; Mutation ; Nerve Degeneration ; Nerve Growth Factors/genetics/metabolism ; Nerve Tissue Proteins/genetics/*physiology ; Neurons/*metabolism/pathology ; Nuclear Proteins/genetics/*physiology ; Promoter Regions, Genetic ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2001-11-03
    Description: Human immunodeficiency virus-1 (HIV-1) Vpr expression halts the proliferation of human cells at or near the G2 cell-cycle checkpoint. The transition from G2 to mitosis is normally controlled by changes in the state of phosphorylation and subcellular compartmentalization of key cell-cycle regulatory proteins. In studies of the intracellular trafficking of these regulators, we unexpectedly found that wild-type Vpr, but not Vpr mutants impaired for G2 arrest, induced transient, localized herniations in the nuclear envelope (NE). These herniations were associated with defects in the nuclear lamina. Intermittently, these herniations ruptured, resulting in the mixing of nuclear and cytoplasmic components. These Vpr-induced NE changes probably contribute to the observed cell-cycle arrest.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Noronha, C M -- Sherman, M P -- Lin, H W -- Cavrois, M V -- Moir, R D -- Goldman, R D -- Greene, W C -- KO8 AI01866/AI/NIAID NIH HHS/ -- P30 MH59037/MH/NIMH NIH HHS/ -- R01 AI145234/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1105-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gladstone Institute of Virology and Immunology, Department of Medicine, University of California, San Francisco, CA 94103, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691994" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Cell Cycle Proteins/metabolism ; Cell Nucleus/*metabolism/virology ; Cyclin B/metabolism ; Cyclin B1 ; Cytoplasm/metabolism ; *G2 Phase ; Gene Products, vpr/genetics/*physiology ; HIV-1/*physiology ; HeLa Cells ; Humans ; *Lamin Type B ; Lamins ; Macrophages/virology ; Microscopy, Fluorescence ; Microscopy, Video ; Mitosis ; Mutation ; Nuclear Envelope/*metabolism/ultrastructure ; Nuclear Pore Complex Proteins/metabolism ; Nuclear Proteins/metabolism ; Protein-Tyrosine Kinases/metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection ; Virus Integration ; cdc25 Phosphatases/metabolism ; vpr Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 2001 Mar 2;291(5509):1733-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11249817" target="_blank"〉PubMed〈/a〉
    Keywords: Continental Population Groups/genetics ; Culture ; DNA, Mitochondrial/*genetics ; *Emigration and Immigration ; Ethnic Groups/genetics ; Female ; Genetic Markers ; *Genetics, Population ; Humans ; Male ; Mutation ; Sex Characteristics ; Y Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2001-09-05
    Description: The developmental signaling functions of cell surface heparan sulfate proteoglycans (HSPGs) are dependent on their sulfation states. Here, we report the identification of QSulf1, the avian ortholog of an evolutionarily conserved protein family related to heparan-specific N-acetyl glucosamine sulfatases. QSulf1 expression is induced by Sonic hedgehog in myogenic somite progenitors in quail embryos and is required for the activation of MyoD, a Wnt-induced regulator of muscle specification. QSulf1 is localized on the cell surface and regulates heparan-dependent Wnt signaling in C2C12 myogenic progenitor cells through a mechanism that requires its catalytic activity, providing evidence that QSulf1 regulates Wnt signaling through desulfation of cell surface HSPGs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dhoot, G K -- Gustafsson, M K -- Ai, X -- Sun, W -- Standiford, D M -- Emerson , C P Jr -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1663-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Basic Veterinary Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 OTU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533491" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Body Patterning ; CHO Cells ; Cell Membrane/metabolism ; Cells, Cultured ; Cloning, Molecular ; Coculture Techniques ; Cricetinae ; Embryo, Nonmammalian/metabolism ; Embryonic Development ; Hedgehog Proteins ; Heparan Sulfate Proteoglycans/*metabolism ; Heparin/metabolism/pharmacology ; Heparitin Sulfate/metabolism ; Molecular Sequence Data ; Muscles/cytology/*embryology/metabolism ; Mutation ; MyoD Protein/genetics/metabolism ; Oligonucleotides, Antisense ; Proto-Oncogene Proteins/*metabolism ; Quail/*embryology ; Recombinant Fusion Proteins/metabolism ; Sequence Alignment ; *Signal Transduction ; Somites/metabolism ; Stem Cells/*metabolism ; Sulfatases/chemistry/genetics/*metabolism ; Trans-Activators/genetics/metabolism ; Transfection ; Wnt Proteins ; *Zebrafish Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2001-06-26
    Description: A(2), a capsid protein of RNA phage Qbeta, is also responsible for host lysis. A(2) blocked synthesis of murein precursors in vivo by inhibiting MurA, the catalyst of the committed step of murein biosynthesis. An A(2)-resistance mutation mapped to an exposed surface near the substrate-binding cleft of MurA. Moreover, purified Qbeta virions inhibited wild-type MurA, but not the mutant MurA, in vitro. Thus, the two small phages characterized for their lysis strategy, Qbeta and the small DNA phage phiX174, effect host lysis by targeting different enzymes in the multistep, universally conserved pathway of cell wall biosynthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernhardt, T G -- Wang, I N -- Struck, D K -- Young, R -- New York, N.Y. -- Science. 2001 Jun 22;292(5525):2326-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA..〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423662" target="_blank"〉PubMed〈/a〉
    Keywords: Alkyl and Aryl Transferases/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Allolevivirus/genetics/*metabolism ; Anti-Bacterial Agents/*metabolism/pharmacology ; Bacterial Proteins/antagonists & inhibitors/metabolism ; *Bacteriolysis ; Bacteriophage phi X 174/metabolism/physiology ; Binding Sites ; Capsid/*metabolism/pharmacology ; Escherichia coli/enzymology/genetics/*virology ; Mutation ; Peptidoglycan/*biosynthesis ; *Transferases ; Uridine Diphosphate N-Acetylglucosamine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, V M -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1446-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283, USA. vmylee@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520974" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/drug therapy/metabolism/*pathology ; Amyloid beta-Peptides/administration & dosage/genetics/*metabolism/pharmacology ; Amyloid beta-Protein Precursor/genetics/metabolism ; Animals ; Brain/metabolism/*pathology ; Disease Models, Animal ; Humans ; Mice ; Mice, Transgenic ; Mutation ; Nerve Degeneration ; Neurofibrillary Tangles/metabolism/*pathology ; Peptide Fragments/administration & dosage/pharmacology ; Plaque, Amyloid/metabolism/*pathology ; tau Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2001-06-26
    Description: The frequencies of low-activity alleles of glucose-6-phosphate dehydrogenase in humans are highly correlated with the prevalence of malaria. These "deficiency" alleles are thought to provide reduced risk from infection by the Plasmodium parasite and are maintained at high frequency despite the hemopathologies that they cause. Haplotype analysis of "A-" and "Med" mutations at this locus indicates that they have evolved independently and have increased in frequency at a rate that is too rapid to be explained by random genetic drift. Statistical modeling indicates that the A- allele arose within the past 3840 to 11,760 years and the Med allele arose within the past 1600 to 6640 years. These results support the hypothesis that malaria has had a major impact on humans only since the introduction of agriculture within the past 10,000 years and provide a striking example of the signature of selection on the human genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tishkoff, S A -- Varkonyi, R -- Cahinhinan, N -- Abbes, S -- Argyropoulos, G -- Destro-Bisol, G -- Drousiotou, A -- Dangerfield, B -- Lefranc, G -- Loiselet, J -- Piro, A -- Stoneking, M -- Tagarelli, A -- Tagarelli, G -- Touma, E H -- Williams, S M -- Clark, A G -- G12-RR03032/RR/NCRR NIH HHS/ -- HL03321/HL/NHLBI NIH HHS/ -- T37-TW00043/TW/FIC NIH HHS/ -- New York, N.Y. -- Science. 2001 Jul 20;293(5529):455-62. Epub 2001 Jun 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Biology/Psychology Building, University of Maryland, College Park, MD 20742, USA. st130@umail.umd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423617" target="_blank"〉PubMed〈/a〉
    Keywords: Africa/epidemiology ; Agriculture ; Alleles ; Animals ; Endemic Diseases ; Evolution, Molecular ; Female ; *Genetic Variation ; Glucosephosphate Dehydrogenase/*genetics ; Glucosephosphate Dehydrogenase Deficiency/epidemiology/*genetics ; *Haplotypes ; Humans ; Immunity, Innate/genetics ; *Linkage Disequilibrium ; Malaria/enzymology/epidemiology/*genetics ; Malaria, Falciparum/enzymology/epidemiology/genetics ; Male ; Mediterranean Region/epidemiology ; Mutation ; Plasmodium falciparum/genetics ; Polymorphism, Restriction Fragment Length ; Selection, Genetic ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2001-02-07
    Description: The disulfide reducing enzymes glutathione reductase and thioredoxin reductase are highly conserved among bacteria, fungi, worms, and mammals. These proteins maintain intracellular redox homeostasis to protect the organism from oxidative damage. Here we demonstrate the absence of glutathione reductase in Drosophila melanogaster, identify a new type of thioredoxin reductase, and provide evidence that a thioredoxin system supports GSSG reduction. Our data suggest that antioxidant defense in Drosophila, and probably in related insects, differs fundamentally from that in other organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kanzok, S M -- Fechner, A -- Bauer, H -- Ulschmid, J K -- Muller, H M -- Botella-Munoz, J -- Schneuwly, S -- Schirmer, R -- Becker, K -- New York, N.Y. -- Science. 2001 Jan 26;291(5504):643-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center of Biochemistry, Im Neuenheimer Feld 328, Heidelberg University, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11158675" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Drosophila melanogaster/*enzymology/genetics/metabolism ; Genes, Insect ; Glutathione/*metabolism ; Glutathione Disulfide/metabolism ; Glutathione Reductase/*metabolism ; Humans ; Kinetics ; Molecular Sequence Data ; Mutation ; NADP/metabolism ; Oxidation-Reduction ; Sequence Alignment ; Species Specificity ; Substrate Specificity ; Thioredoxin-Disulfide Reductase/antagonists & ; inhibitors/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bock, A -- New York, N.Y. -- Science. 2001 Apr 20;292(5516):453-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universitat, Institut fur Genetik und Mikrobiologie, Munich 19 80638, Germany. august.boeck@lrz.uni-muenchen.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11330299" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acyl-tRNA Synthetases/genetics/*metabolism ; Aminobutyrates/metabolism ; Codon/genetics/metabolism ; Cysteine/metabolism ; Escherichia coli/genetics ; *Genetic Code ; Methanococcus/genetics ; Methyltyrosines/metabolism ; Mutation ; *Protein Biosynthesis ; RNA, Bacterial/genetics/metabolism ; RNA, Transfer, Amino Acid-Specific/genetics/*metabolism ; RNA, Transfer, Tyr/genetics/metabolism ; RNA, Transfer, Val/metabolism ; Suppression, Genetic ; Transformation, Bacterial ; Tyrosine-tRNA Ligase/genetics/metabolism ; Valine-tRNA Ligase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2001-08-18
    Description: Cell division depends on the separation of sister chromatids in anaphase. In yeast, sister separation is initiated by cleavage of cohesin by the protease separase. In vertebrates, most cohesin is removed from chromosome arms by a cleavage-independent mechanism. Only residual amounts of cohesin are cleaved at the onset of anaphase, coinciding with its disappearance from centromeres. We have identified two separase cleavage sites in the human cohesin subunit SCC1 and have conditionally expressed noncleavable SCC1 mutants in human cells. Our results indicate that cohesin cleavage by separase is essential for sister chromatid separation and for the completion of cytokinesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hauf, S -- Waizenegger, I C -- Peters, J M -- New York, N.Y. -- Science. 2001 Aug 17;293(5533):1320-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology (IMP), Dr.-Bohr Gasse 7, A-1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509732" target="_blank"〉PubMed〈/a〉
    Keywords: *Anaphase ; Aneuploidy ; Aurora Kinases ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; *Cell Division ; Cell Nucleus/ultrastructure ; Centromere/metabolism ; Chromatids/metabolism ; Chromosomal Proteins, Non-Histone ; Chromosomes/*metabolism ; Cyclin B/metabolism ; DNA Replication ; Endopeptidases/*metabolism ; HeLa Cells ; Humans ; Karyotyping ; Microscopy, Fluorescence ; Microscopy, Video ; Mutation ; Nuclear Proteins ; Phosphoproteins ; Protein-Serine-Threonine Kinases/metabolism ; Saccharomyces cerevisiae Proteins ; Separase ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2001-09-22
    Description: Bardet-Biedl syndrome (BBS) is a genetically heterogeneous disorder characterized by multiple clinical features that include pigmentary retinal dystrophy, polydactyly, obesity, developmental delay, and renal defects. BBS is considered an autosomal recessive disorder, and recent positional cloning efforts have identified two BBS genes (BBS2 and BBS6). We screened our cohort of 163 BBS families for mutations in both BBS2 and BBS6 and report the presence of three mutant alleles in affected individuals in four pedigrees. In addition, we detected unaffected individuals in two pedigrees who carry two BBS2 mutations but not a BBS6 mutation. We therefore propose that BBS may not be a single-gene recessive disease but a complex trait requiring three mutant alleles to manifest the phenotype. This triallelic model of disease transmission may be important in the study of both Mendelian and multifactorial disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Katsanis, N -- Ansley, S J -- Badano, J L -- Eichers, E R -- Lewis, R A -- Hoskins, B E -- Scambler, P J -- Davidson, W S -- Beales, P L -- Lupski, J R -- EY12666/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 21;293(5538):2256-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Human Genetics, The Texas Children's Hospital, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11567139" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Bardet-Biedl Syndrome/*genetics ; Cohort Studies ; Female ; Genes, Recessive ; Haplotypes ; Humans ; Male ; Microsatellite Repeats ; *Multifactorial Inheritance ; Mutation ; Open Reading Frames ; Pedigree
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2001-12-26
    Description: Stem cells, which regenerate tissue by producing differentiating cells, also produce cells that renew the stem cell population. Signals from regulatory microenvironments (niches) are thought to cause stem cells to retain self-renewing potential. However, the molecular characterization of niches remains an important goal. In Drosophila testes, germ line and somatic stem cells attach to a cluster of support cells called the hub. The hub specifically expresses Unpaired, a ligand activating the JAK-STAT (Janus kinase-signal transducer and activator of transcription) signaling cascade. Without JAK-STAT signaling, germ line stem cells differentiate but do not self-renew. Conversely, ectopic JAK-STAT signaling greatly expands both stem cell populations. We conclude that the support cells of the hub signal to adjacent stem cells by activation of the JAK-STAT pathway, thereby defining a niche for stem cell self-renewal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tulina, N -- Matunis, E -- R01 HD040307/HD/NICHD NIH HHS/ -- R01HD40307/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2546-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Embryology, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, MD 21210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752575" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Cell Survival ; Contractile Proteins/analysis ; DNA-Binding Proteins/genetics/*metabolism ; Drosophila/cytology/genetics/*physiology ; Drosophila Proteins/genetics/*metabolism ; Gene Expression ; Germ Cells/cytology/*physiology ; Glycoproteins/genetics/*metabolism ; Insect Proteins/genetics/metabolism ; Janus Kinases ; Ligands ; Male ; Microscopy, Confocal ; Mutation ; Protein-Tyrosine Kinases/genetics/*metabolism ; STAT Transcription Factors ; Signal Transduction ; Spermatogenesis ; Spermatogonia/physiology ; Stem Cells/cytology/*physiology ; Testis/cytology/metabolism ; Trans-Activators/genetics/*metabolism ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2001-09-08
    Description: Bcl-2 family members bearing only the BH3 domain are essential inducers of apoptosis. We identified a BH3-only protein, Bmf, and show that its BH3 domain is required both for binding to prosurvival Bcl-2 proteins and for triggering apoptosis. In healthy cells, Bmf is sequestered to myosin V motors by association with dynein light chain 2. Certain damage signals, such as loss of cell attachment (anoikis), unleash Bmf, allowing it to translocate and bind prosurvival Bcl-2 proteins. Thus, at least two mammalian BH3-only proteins, Bmf and Bim, function to sense intracellular damage by their localization to distinct cytoskeletal structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Puthalakath, H -- Villunger, A -- O'Reilly, L A -- Beaumont, J G -- Coultas, L -- Cheney, R E -- Huang, D C -- Strasser, A -- CA 80188/CA/NCI NIH HHS/ -- R29 DC003299/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1829-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Walter and Eliza Hall Institute of Medical Research, Melbourne, P.O. Royal Melbourne Hospital, 3050 VIC, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546872" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; *Anoikis ; Apoptosis Regulatory Proteins ; Calmodulin-Binding Proteins/*metabolism ; Carrier Proteins/*chemistry/genetics/*metabolism ; Cell Line ; Cytoskeleton/metabolism ; *Drosophila Proteins ; Dyneins ; Gene Expression Profiling ; Humans ; *Membrane Proteins ; Mice ; Molecular Motor Proteins/*metabolism ; Molecular Sequence Data ; Mutation ; Myeloid Cell Leukemia Sequence 1 Protein ; *Myosin Type V ; Neoplasm Proteins/genetics/metabolism ; Nerve Tissue Proteins/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Transport ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-bcl-2/chemistry/genetics/metabolism ; RNA, Messenger/analysis/genetics ; Transfection ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2001-12-12
    Description: Nasopharyngeal carriage is the major reservoir for Streptococcus pneumoniae in the community. Although eliminating this reservoir would greatly reduce disease occurrence, no suitable intervention has been available for this purpose. We show here that seconds after contact, a purified pneumococcal bacteriophage lytic enzyme (Pal) is able to kill 15 common serotypes of pneumococci, including highly penicillin-resistant strains. In vivo, previously colonized mice revealed undetectable pneumococcal titers 5 hours after a single enzyme treatment. Pal enzyme had little or no effect on microorganisms normally found in the human oropharynx, and Pal-resistant pneumococci could not be detected after extensive exposure to the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loeffler, J M -- Nelson, D -- Fischetti, V A -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2170-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Bacterial Pathogenesis, The Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11739958" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Capsules/physiology ; Bacteriolysis ; Cell Membrane/drug effects/ultrastructure ; Cell Wall/drug effects/ultrastructure ; Colony Count, Microbial ; Drug Resistance, Bacterial ; Humans ; Mice ; Mutation ; N-Acetylmuramoyl-L-alanine Amidase/*metabolism/*pharmacology ; Nasopharynx/*microbiology ; Random Allocation ; Streptococcus/drug effects/growth & development ; Streptococcus Phages/*enzymology ; Streptococcus pneumoniae/*drug effects/growth & ; development/physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2001-12-12
    Description: Little is known about the dynamics of chromosomes in interphase nuclei. By tagging four chromosomal regions with a green fluorescent protein fusion to lac repressor, we monitored the movement and subnuclear position of specific sites in the yeast genome, sampling at short time intervals. We found that early and late origins of replication are highly mobile in G1 phase, frequently moving at or faster than 0.5 micrometers/10 seconds, in an energy-dependent fashion. The rapid diffusive movement of chromatin detected in G1 becomes constrained in S phase through a mechanism dependent on active DNA replication. In contrast, telomeres and centromeres provide replication-independent constraint on chromatin movement in both G1 and S phases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heun, P -- Laroche, T -- Shimada, K -- Furrer, P -- Gasser, S M -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2181-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Geneva, Department of Molecular Biology, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11739961" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Cell Nucleus/physiology ; Centromere/physiology ; Chromatin/*physiology ; Chromosomes, Fungal/*physiology ; DNA Replication ; DNA, Fungal/biosynthesis ; G1 Phase ; Green Fluorescent Proteins ; *Interphase ; Luminescent Proteins ; Motion Pictures as Topic ; Mutation ; Nuclear Envelope/physiology ; Replication Origin ; S Phase ; Saccharomyces cerevisiae/genetics/growth & development/*physiology ; Telomere/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-10-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Enserink, M -- New York, N.Y. -- Science. 2001 Oct 26;294(5543):759-61.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11679638" target="_blank"〉PubMed〈/a〉
    Keywords: Anthrax/*drug therapy/microbiology ; Anti-Bacterial Agents/pharmacology/therapeutic use ; Anti-Infective Agents/pharmacology/*therapeutic use ; *Antigens, Bacterial ; Bacillus anthracis/*drug effects/genetics ; Bacterial Toxins/chemistry/metabolism ; *Bioterrorism ; Ciprofloxacin/pharmacology/*therapeutic use ; Drug Resistance, Bacterial ; Drug Utilization ; Humans ; Mutation ; Receptors, Cell Surface/metabolism ; Respiratory Tract Infections/*drug therapy/microbiology ; United States ; United States Food and Drug Administration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2001-03-27
    Description: Protein actions are usually discussed in terms of static structures, but function requires motion. We find a strong correlation between phosphorylation-driven activation of the signaling protein NtrC and microsecond time-scale backbone dynamics. Using nuclear magnetic resonance relaxation, we characterized the motions of NtrC in three functional states: unphosphorylated (inactive), phosphorylated (active), and a partially active mutant. These dynamics are indicative of exchange between inactive and active conformations. Both states are populated in unphosphorylated NtrC, and phosphorylation shifts the equilibrium toward the active species. These results support a dynamic population shift between two preexisting conformations as the underlying mechanism of activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Volkman, B F -- Lipson, D -- Wemmer, D E -- Kern, D -- GM62117/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2429-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264542" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; *Bacterial Proteins ; Binding Sites ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Models, Molecular ; Motion ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; PII Nitrogen Regulatory Proteins ; Phosphorylation ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; Time ; *Trans-Activators ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2001-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nadeau, J H -- Balling, R -- Barsh, G -- Beier, D -- Brown, S D -- Bucan, M -- Camper, S -- Carlson, G -- Copeland, N -- Eppig, J -- Fletcher, C -- Frankel, W N -- Ganten, D -- Goldowitz, D -- Goodnow, C -- Guenet, J L -- Hicks, G -- Hrabe de Angelis, M -- Jackson, I -- Jacob, H J -- Jenkins, N -- Johnson, D -- Justice, M -- Kay, S -- Kingsley, D -- Lehrach, H -- Magnuson, T -- Meisler, M -- Poustka, A -- Rinchik, E M -- Rossant, J -- Russell, L B -- Schimenti, J -- Shiroishi, T -- Skarnes, W C -- Soriano, P -- Stanford, W -- Takahashi, J S -- Wurst, W -- Zimmer, A -- International Mouse Mutagenesis Consortium -- New York, N.Y. -- Science. 2001 Feb 16;291(5507):1251-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, BRB 624, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA. jhn4@po.cwru.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11233449" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Mapping ; *Computational Biology ; Costs and Cost Analysis ; Genes/physiology ; Genetic Techniques ; *Genome ; *Genomics ; International Cooperation ; Mice/*genetics ; Mutagenesis ; Mutation ; Phenotype ; Private Sector ; Public Sector ; Research Support as Topic ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2001-07-14
    Description: Long-distance movement of RNA through the phloem is known to occur, but the functional importance of these transported RNAs has remained unclear. Grafting experiments with a naturally occurring dominant gain-of-function leaf mutation in tomato were used to demonstrate long-distance movement of mutant messenger RNA (mRNA) into wild-type scions. The stock-specific pattern of mRNA expression was graft transmissible, indicating that the mRNA accumulation pattern is inherent to the transcript and not attributable to the promoter. The translocated mRNA caused changes in leaf morphology of the wild-type scions, suggesting that the translocated RNA is functional.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, M -- Canio, W -- Kessler, S -- Sinha, N -- New York, N.Y. -- Science. 2001 Jul 13;293(5528):287-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Plant Biology, Division of Biological Sciences, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11452121" target="_blank"〉PubMed〈/a〉
    Keywords: Artificial Gene Fusion ; Genes, Homeobox ; Genes, Plant ; Homeodomain Proteins/genetics ; Lutein/genetics ; Lycopersicon esculentum/genetics/growth & development/*metabolism ; Mutation ; Phosphotransferases/genetics ; Plant Leaves/growth & development/*metabolism ; Plant Proteins/genetics ; RNA, Messenger/*metabolism ; RNA, Plant/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-25
    Description: In Drosophila melanogaster, the antennae, legs, genitalia, and analia make up a serially homologous set of ventral appendages that depend on different selector genes for their unique identities. The diversity among these structures implies that there is a common ground state that selector genes modify to generate these different appendage morphologies. Here we show that the ventral appendage that forms in the absence of selector gene activity is leglike but consists of only two segments along its proximo-distal axis: a proximal segment and a distal tarsus. These results raise the possibility that, during evolution, leglike appendages could have developed without selector gene activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Casares, F -- Mann, R S -- R01 GM058575/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1477-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168 Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520984" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antennapedia Homeodomain Protein ; Biological Evolution ; Calcium-Binding Proteins ; *Drosophila Proteins ; Drosophila melanogaster/anatomy & histology/*genetics/*growth & development ; Epistasis, Genetic ; Extremities/growth & development ; *Gene Expression Regulation, Developmental ; *Genes, Homeobox ; Genes, Insect ; Glycosyltransferases/genetics/metabolism ; Homeodomain Proteins/*genetics/physiology ; Insect Proteins/genetics ; Intercellular Signaling Peptides and Proteins ; Intracellular Signaling Peptides and Proteins ; Ligands ; Membrane Proteins/genetics/metabolism ; Mutation ; *N-Acetylglucosaminyltransferases ; *Nuclear Proteins ; Phenotype ; Receptors, Notch ; Sense Organs/growth & development ; Signal Transduction ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2001-03-07
    Description: Loss of telomere function in metazoans results in catastrophic damage to the genome, cell cycle arrest, and apoptosis. Here we show that the mustard weed Arabidopsis thaliana can survive up to 10 generations without telomerase. The last five generations of telomerase-deficient plants endured increasing levels of cytogenetic damage, which was correlated with developmental anomalies in both vegetative and reproductive organs. Mutants ultimately arrested at a terminal vegetative state harboring shoot meristems that were grossly enlarged, disorganized, and in some cases, dedifferentiated into a callusoid mass. Unexpectedly, late-generation mutants had an extended life-span and remained metabolically active. The differences in plant and animal responses to dysfunctional telomeres may reflect the more plastic nature of plant development and genome organization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Riha, K -- McKnight, T D -- Griffing, L R -- Shippen, D E -- New York, N.Y. -- Science. 2001 Mar 2;291(5509):1797-800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, 2128 TAMU, Texas A&M University, College Station, TX 77843-2128, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11230697" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Apoptosis ; Arabidopsis/anatomy & histology/genetics/growth & development/*physiology ; Cell Differentiation ; Cell Division ; *Genome, Plant ; Meristem/anatomy & histology/cytology/growth & development ; Mitotic Index ; Mutation ; Phenotype ; Plant Leaves/anatomy & histology/cytology/growth & development ; Plant Structures/anatomy & histology/cytology/growth & development ; Telomerase/genetics/*metabolism ; Telomere/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferber, D -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):1983-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11408629" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Alzheimer Disease/metabolism/pathology ; Animals ; Animals, Genetically Modified ; Brain/metabolism/pathology ; *Dementia/metabolism/pathology ; *Disease Models, Animal ; *Drosophila/genetics ; Humans ; Mutation ; Nerve Degeneration ; *Neurodegenerative Diseases/metabolism/pathology ; Neurofibrillary Tangles/ultrastructure ; Neurons/metabolism/*ultrastructure ; tau Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2001-03-27
    Description: Length determination in biology generally uses molecular rulers. The hook, a part of the flagellum of motile bacteria, has an invariant length. Here, we examined hook length and found that it was determined not by molecular rulers but probably by the amount of subunit protein secreted by the flagellar export apparatus. The export apparatus shares common features with the type III virulence-factor secretion machinery and thus may be used more widely in length determination of structures other than flagella.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Makishima, S -- Komoriya, K -- Yamaguchi, S -- Aizawa, S I -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2411-3. Epub 2001 Feb 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264537" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*metabolism ; Binding Sites ; Flagella/metabolism/physiology/*ultrastructure ; Flagellin/*metabolism ; Genes, Bacterial ; Microscopy, Electron ; Movement ; Mutation ; Protein Transport ; Salmonella typhimurium/genetics/metabolism/physiology/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...