ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-12-20
    Description: Approximately 80% of the maize genome comprises highly repetitive sequences interspersed with single-copy, gene-rich sequences, and standard genome sequencing strategies are not readily adaptable to this type of genome. Methodologies that enrich for genic sequences might more rapidly generate useful results from complex genomes. Equivalent numbers of clones from maize selected by techniques called methylation filtering and High C0t selection were sequenced to generate approximately 200,000 reads (approximately 132 megabases), which were assembled into contigs. Combination of the two techniques resulted in a sixfold reduction in the effective genome size and a fourfold increase in the gene identification rate in comparison to a nonenriched library.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whitelaw, C A -- Barbazuk, W B -- Pertea, G -- Chan, A P -- Cheung, F -- Lee, Y -- Zheng, L -- van Heeringen, S -- Karamycheva, S -- Bennetzen, J L -- SanMiguel, P -- Lakey, N -- Bedell, J -- Yuan, Y -- Budiman, M A -- Resnick, A -- Van Aken, S -- Utterback, T -- Riedmuller, S -- Williams, M -- Feldblyum, T -- Schubert, K -- Beachy, R -- Fraser, C M -- Quackenbush, J -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2118-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684821" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Plant/genetics ; Cloning, Molecular ; Computational Biology ; Contig Mapping ; DNA Methylation ; DNA, Plant/genetics ; Databases, Nucleic Acid ; Expressed Sequence Tags ; Gene Dosage ; Gene Library ; *Genes, Plant ; *Genome, Plant ; Molecular Sequence Data ; Repetitive Sequences, Nucleic Acid ; Retroelements ; Sequence Alignment ; Sequence Analysis, DNA/*methods ; Transcription, Genetic ; Zea mays/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-09-27
    Description: A survey of the dog genome sequence (6.22 million sequence reads; 1.5x coverage) demonstrates the power of sample sequencing for comparative analysis of mammalian genomes and the generation of species-specific resources. More than 650 million base pairs (〉25%) of dog sequence align uniquely to the human genome, including fragments of putative orthologs for 18,473 of 24,567 annotated human genes. Mutation rates, conserved synteny, repeat content, and phylogeny can be compared among human, mouse, and dog. A variety of polymorphic elements are identified that will be valuable for mapping the genetic basis of diseases and traits in the dog.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirkness, Ewen F -- Bafna, Vineet -- Halpern, Aaron L -- Levy, Samuel -- Remington, Karin -- Rusch, Douglas B -- Delcher, Arthur L -- Pop, Mihai -- Wang, Wei -- Fraser, Claire M -- Venter, J Craig -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1898-903.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512627" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Mammalian/genetics ; Computational Biology ; Conserved Sequence ; Contig Mapping ; DNA, Intergenic ; Dogs/*genetics ; Genetic Variation ; *Genome ; Genome, Human ; Genomics ; Humans ; Long Interspersed Nucleotide Elements ; Male ; Mice/genetics ; Molecular Sequence Data ; Mutation ; Phylogeny ; Physical Chromosome Mapping ; Polymorphism, Single Nucleotide ; RNA, Messenger/genetics ; Repetitive Sequences, Nucleic Acid ; Sequence Alignment ; *Sequence Analysis, DNA ; Short Interspersed Nucleotide Elements ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-03-10
    Description: The 2,272,351-base pair genome of Neisseria meningitidis strain MC58 (serogroup B), a causative agent of meningitis and septicemia, contains 2158 predicted coding regions, 1158 (53.7%) of which were assigned a biological role. Three major islands of horizontal DNA transfer were identified; two of these contain genes encoding proteins involved in pathogenicity, and the third island contains coding sequences only for hypothetical proteins. Insights into the commensal and virulence behavior of N. meningitidis can be gleaned from the genome, in which sequences for structural proteins of the pilus are clustered and several coding regions unique to serogroup B capsular polysaccharide synthesis can be identified. Finally, N. meningitidis contains more genes that undergo phase variation than any pathogen studied to date, a mechanism that controls their expression and contributes to the evasion of the host immune system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tettelin, H -- Saunders, N J -- Heidelberg, J -- Jeffries, A C -- Nelson, K E -- Eisen, J A -- Ketchum, K A -- Hood, D W -- Peden, J F -- Dodson, R J -- Nelson, W C -- Gwinn, M L -- DeBoy, R -- Peterson, J D -- Hickey, E K -- Haft, D H -- Salzberg, S L -- White, O -- Fleischmann, R D -- Dougherty, B A -- Mason, T -- Ciecko, A -- Parksey, D S -- Blair, E -- Cittone, H -- Clark, E B -- Cotton, M D -- Utterback, T R -- Khouri, H -- Qin, H -- Vamathevan, J -- Gill, J -- Scarlato, V -- Masignani, V -- Pizza, M -- Grandi, G -- Sun, L -- Smith, H O -- Fraser, C M -- Moxon, E R -- Rappuoli, R -- Venter, J C -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1809-15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710307" target="_blank"〉PubMed〈/a〉
    Keywords: Antigenic Variation ; Antigens, Bacterial/immunology ; Bacteremia/microbiology ; Bacterial Capsules/genetics ; Bacterial Proteins/genetics/physiology ; DNA Transposable Elements ; Evolution, Molecular ; Fimbriae, Bacterial/genetics ; *Genome, Bacterial ; Humans ; Meningitis, Meningococcal/microbiology ; Meningococcal Infections/microbiology ; Molecular Sequence Data ; Mutation ; Neisseria meningitidis/classification/*genetics/*pathogenicity/physiology ; Open Reading Frames ; Operon ; Phylogeny ; Recombination, Genetic ; *Sequence Analysis, DNA ; Serotyping ; Transformation, Bacterial ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-07-21
    Description: The 2,160,837-base pair genome sequence of an isolate of Streptococcus pneumoniae, a Gram-positive pathogen that causes pneumonia, bacteremia, meningitis, and otitis media, contains 2236 predicted coding regions; of these, 1440 (64%) were assigned a biological role. Approximately 5% of the genome is composed of insertion sequences that may contribute to genome rearrangements through uptake of foreign DNA. Extracellular enzyme systems for the metabolism of polysaccharides and hexosamines provide a substantial source of carbon and nitrogen for S. pneumoniae and also damage host tissues and facilitate colonization. A motif identified within the signal peptide of proteins is potentially involved in targeting these proteins to the cell surface of low-guanine/cytosine (GC) Gram-positive species. Several surface-exposed proteins that may serve as potential vaccine candidates were identified. Comparative genome hybridization with DNA arrays revealed strain differences in S. pneumoniae that could contribute to differences in virulence and antigenicity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tettelin, H -- Nelson, K E -- Paulsen, I T -- Eisen, J A -- Read, T D -- Peterson, S -- Heidelberg, J -- DeBoy, R T -- Haft, D H -- Dodson, R J -- Durkin, A S -- Gwinn, M -- Kolonay, J F -- Nelson, W C -- Peterson, J D -- Umayam, L A -- White, O -- Salzberg, S L -- Lewis, M R -- Radune, D -- Holtzapple, E -- Khouri, H -- Wolf, A M -- Utterback, T R -- Hansen, C L -- McDonald, L A -- Feldblyum, T V -- Angiuoli, S -- Dickinson, T -- Hickey, E K -- Holt, I E -- Loftus, B J -- Yang, F -- Smith, H O -- Venter, J C -- Dougherty, B A -- Morrison, D A -- Hollingshead, S K -- Fraser, C M -- R01 AI40645-01A1/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Jul 20;293(5529):498-506.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11463916" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Bacterial ; Bacterial Proteins/chemistry/genetics/immunology/metabolism ; Bacterial Vaccines ; Base Composition ; Carbohydrate Metabolism ; Carrier Proteins/genetics/metabolism ; Chromosomes, Bacterial/genetics ; Computational Biology ; DNA Transposable Elements ; DNA, Bacterial/chemistry/genetics ; Gene Duplication ; Genes, Bacterial ; *Genome, Bacterial ; Hexosamines/metabolism ; Oligonucleotide Array Sequence Analysis ; Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; *Sequence Analysis, DNA ; Species Specificity ; Streptococcus pneumoniae/*genetics/immunology/metabolism/*pathogenicity ; Virulence ; rRNA Operon
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-11-06
    Description: Chromosome 2 of Plasmodium falciparum was sequenced; this sequence contains 947,103 base pairs and encodes 210 predicted genes. In comparison with the Saccharomyces cerevisiae genome, chromosome 2 has a lower gene density, introns are more frequent, and proteins are markedly enriched in nonglobular domains. A family of surface proteins, rifins, that may play a role in antigenic variation was identified. The complete sequencing of chromosome 2 has shown that sequencing of the A+T-rich P. falciparum genome is technically feasible.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gardner, M J -- Tettelin, H -- Carucci, D J -- Cummings, L M -- Aravind, L -- Koonin, E V -- Shallom, S -- Mason, T -- Yu, K -- Fujii, C -- Pederson, J -- Shen, K -- Jing, J -- Aston, C -- Lai, Z -- Schwartz, D C -- Pertea, M -- Salzberg, S -- Zhou, L -- Sutton, G G -- Clayton, R -- White, O -- Smith, H O -- Fraser, C M -- Adams, M D -- Venter, J C -- Hoffman, S L -- R01 AI40125-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 6;282(5391):1126-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9804551" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Protozoan/chemistry/genetics ; Base Composition ; Chromosomes/*genetics ; Evolution, Molecular ; *Genes, Protozoan ; Genome, Protozoan ; Introns ; Membrane Proteins/chemistry/genetics ; Molecular Sequence Data ; Multigene Family ; Physical Chromosome Mapping ; Plasmodium falciparum/*genetics ; Protozoan Proteins/chemistry/*genetics ; RNA, Protozoan/genetics ; RNA, Transfer, Glu/genetics ; Repetitive Sequences, Nucleic Acid ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Alignment ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-12-16
    Description: This report presents full-genome evidence that bacterial cells use discrete transcription patterns to control cell cycle progression. Global transcription analysis of synchronized Caulobacter crescentus cells was used to identify 553 genes (19% of the genome) whose messenger RNA levels varied as a function of the cell cycle. We conclude that in bacteria, as in yeast, (i) genes involved in a given cell function are activated at the time of execution of that function, (ii) genes encoding proteins that function in complexes are coexpressed, and (iii) temporal cascades of gene expression control multiprotein structure biogenesis. A single regulatory factor, the CtrA member of the two-component signal transduction family, is directly or indirectly involved in the control of 26% of the cell cycle-regulated genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Laub, M T -- McAdams, H H -- Feldblyum, T -- Fraser, C M -- Shapiro, L -- GM32506/GM/NIGMS NIH HHS/ -- GM51426/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2144-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11118148" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/genetics/metabolism ; Binding Sites ; Caulobacter crescentus/*cytology/*genetics/growth & development/physiology ; Cell Cycle/*genetics ; Chemotaxis/genetics ; *DNA-Binding Proteins ; DNA-Directed RNA Polymerases/genetics ; Fimbriae Proteins ; Flagella/metabolism ; Gene Expression Profiling ; *Gene Expression Regulation, Bacterial ; Interphase ; Membrane Proteins/genetics ; Oligonucleotide Array Sequence Analysis ; RNA, Bacterial/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; S Phase ; Signal Transduction ; *Transcription Factors ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-11-24
    Description: The complete genome sequence of the radiation-resistant bacterium Deinococcus radiodurans R1 is composed of two chromosomes (2,648,638 and 412,348 base pairs), a megaplasmid (177,466 base pairs), and a small plasmid (45,704 base pairs), yielding a total genome of 3,284, 156 base pairs. Multiple components distributed on the chromosomes and megaplasmid that contribute to the ability of D. radiodurans to survive under conditions of starvation, oxidative stress, and high amounts of DNA damage were identified. Deinococcus radiodurans represents an organism in which all systems for DNA repair, DNA damage export, desiccation and starvation recovery, and genetic redundancy are present in one cell.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147723/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147723/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉White, O -- Eisen, J A -- Heidelberg, J F -- Hickey, E K -- Peterson, J D -- Dodson, R J -- Haft, D H -- Gwinn, M L -- Nelson, W C -- Richardson, D L -- Moffat, K S -- Qin, H -- Jiang, L -- Pamphile, W -- Crosby, M -- Shen, M -- Vamathevan, J J -- Lam, P -- McDonald, L -- Utterback, T -- Zalewski, C -- Makarova, K S -- Aravind, L -- Daly, M J -- Minton, K W -- Fleischmann, R D -- Ketchum, K A -- Nelson, K E -- Salzberg, S -- Smith, H O -- Venter, J C -- Fraser, C M -- R01 CA077712/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 19;286(5444):1571-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10567266" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/biosynthesis/chemistry/genetics ; Catalase/genetics ; Chromosomes, Bacterial/genetics ; DNA Damage ; DNA Repair/genetics ; DNA, Bacterial/genetics ; Energy Metabolism ; Genes, Bacterial ; *Genome, Bacterial ; Gram-Positive Cocci/chemistry/classification/*genetics/radiation effects ; Molecular Sequence Data ; Open Reading Frames ; Oxidative Stress ; *Physical Chromosome Mapping ; Plasmids ; Radiation Tolerance ; Repetitive Sequences, Nucleic Acid ; *Sequence Analysis, DNA ; Superoxide Dismutase/genetics ; Thermus/chemistry/genetics ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1999-12-11
    Description: Mycoplasma genitalium with 517 genes has the smallest gene complement of any independently replicating cell so far identified. Global transposon mutagenesis was used to identify nonessential genes in an effort to learn whether the naturally occurring gene complement is a true minimal genome under laboratory growth conditions. The positions of 2209 transposon insertions in the completely sequenced genomes of M. genitalium and its close relative M. pneumoniae were determined by sequencing across the junction of the transposon and the genomic DNA. These junctions defined 1354 distinct sites of insertion that were not lethal. The analysis suggests that 265 to 350 of the 480 protein-coding genes of M. genitalium are essential under laboratory growth conditions, including about 100 genes of unknown function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hutchison, C A -- Peterson, S N -- Gill, S R -- Cline, R T -- White, O -- Fraser, C M -- Smith, H O -- Venter, J C -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2165-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10591650" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/genetics/metabolism ; Amino Acyl-tRNA Synthetases/genetics ; Bacterial Proteins/genetics ; Chromosome Mapping ; DNA Polymerase III/genetics/metabolism ; DNA Replication/genetics ; *DNA Transposable Elements ; *Genes, Essential ; *Genome, Bacterial ; Glycolysis/genetics ; Lipoproteins/genetics ; *Mutagenesis, Insertional ; Mycoplasma/*genetics/metabolism ; Mycoplasma pneumoniae/genetics/metabolism ; Ribosomal Proteins/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2002-05-11
    Description: Comparison of the whole-genome sequence of Bacillus anthracis isolated from a victim of a recent bioterrorist anthrax attack with a reference reveals 60 new markers that include single nucleotide polymorphisms (SNPs), inserted or deleted sequences, and tandem repeats. Genome comparison detected four high-quality SNPs between the two sequenced B. anthracis chromosomes and seven differences among different preparations of the reference genome. These markers have been tested on a collection of anthrax isolates and were found to divide these samples into distinct families. These results demonstrate that genome-based analysis of microbial pathogens will provide a powerful new tool for investigation of infectious disease outbreaks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Read, Timothy D -- Salzberg, Steven L -- Pop, Mihai -- Shumway, Martin -- Umayam, Lowell -- Jiang, Lingxia -- Holtzapple, Erik -- Busch, Joseph D -- Smith, Kimothy L -- Schupp, James M -- Solomon, Daniel -- Keim, Paul -- Fraser, Claire M -- R01-LM06845/LM/NLM NIH HHS/ -- New York, N.Y. -- Science. 2002 Jun 14;296(5575):2028-33. Epub 2002 May 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA., Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004073" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthrax/microbiology ; Bacillus anthracis/classification/*genetics/isolation & ; purification/pathogenicity ; Bacterial Typing Techniques ; Base Sequence ; Bioterrorism ; Chromosome Inversion ; Computational Biology ; Disease Outbreaks ; Genetic Markers ; *Genetic Variation ; *Genome, Bacterial ; Genomics ; Humans ; Minisatellite Repeats ; Molecular Sequence Data ; Mutation ; Phenotype ; Phylogeny ; Plasmids ; *Polymorphism, Single Nucleotide ; Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; *Sequence Analysis, DNA ; Sequence Deletion ; Species Specificity ; Transposases/genetics ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-10-10
    Description: The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2651158/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2651158/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carlton, Jane M -- Adams, John H -- Silva, Joana C -- Bidwell, Shelby L -- Lorenzi, Hernan -- Caler, Elisabet -- Crabtree, Jonathan -- Angiuoli, Samuel V -- Merino, Emilio F -- Amedeo, Paolo -- Cheng, Qin -- Coulson, Richard M R -- Crabb, Brendan S -- Del Portillo, Hernando A -- Essien, Kobby -- Feldblyum, Tamara V -- Fernandez-Becerra, Carmen -- Gilson, Paul R -- Gueye, Amy H -- Guo, Xiang -- Kang'a, Simon -- Kooij, Taco W A -- Korsinczky, Michael -- Meyer, Esmeralda V-S -- Nene, Vish -- Paulsen, Ian -- White, Owen -- Ralph, Stuart A -- Ren, Qinghu -- Sargeant, Tobias J -- Salzberg, Steven L -- Stoeckert, Christian J -- Sullivan, Steven A -- Yamamoto, Marcio M -- Hoffman, Stephen L -- Wortman, Jennifer R -- Gardner, Malcolm J -- Galinski, Mary R -- Barnwell, John W -- Fraser-Liggett, Claire M -- N01 AI030071/AI/NIAID NIH HHS/ -- R01 AI064478/AI/NIAID NIH HHS/ -- R01 AI064478-05/AI/NIAID NIH HHS/ -- R01 GM070793/GM/NIGMS NIH HHS/ -- R01 GM070793-01A2/GM/NIGMS NIH HHS/ -- R01 GM083873/GM/NIGMS NIH HHS/ -- R01 LM006845/LM/NLM NIH HHS/ -- R01 LM006845-09/LM/NLM NIH HHS/ -- England -- Nature. 2008 Oct 9;455(7214):757-63. doi: 10.1038/nature07327.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research/J. Craig Venter Institute, 9704 Medical Research Drive, Rockville, Maryland 20850, USA. jane.carlton@nyumc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18843361" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Artemisinins/metabolism/pharmacology ; Atovaquone/metabolism/pharmacology ; Cell Nucleus/genetics ; Chromosomes/genetics ; Conserved Sequence/genetics ; Erythrocytes/parasitology ; Evolution, Molecular ; Genome, Protozoan/*genetics ; *Genomics ; Haplorhini/parasitology ; Humans ; Isochores/genetics ; Ligands ; Malaria, Vivax/metabolism/*parasitology ; Multigene Family ; Plasmodium vivax/drug effects/*genetics/pathogenicity/physiology ; Sequence Analysis, DNA ; Species Specificity ; Synteny/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...