ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-06-25
    Description: The Mediterranean area belongs to the regions most exposed to hydroclimatic changes, with a likely increase in frequency and duration of droughts in the last decades. However, many climate records like, e.g., North Italian precipitation and river discharge records, indicate that significant decadal variability is often superposed or even dominates long-term hydrological trends. The capability to accurately predict such decadal changes is, therefore, of utmost environmental and social importance. Here, we present a twofold decadal forecast of Po River (Northern Italy) discharge obtained with a statistical approach consisting of the separate application and cross-validation of autoregressive models and neural networks. Both methods are applied to each significant variability component extracted from the raw discharge time series using Singular Spectrum Analysis, and the final forecast is obtained by merging the predictions of the individual components. The obtained 25-year forecasts robustly indicate a prominent dry period in the late 2020s/early 2030s. Our prediction provides information of great value for hydrological management, and a target for current and future near-term numerical hydrological predictions.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  EPIC3Monthly Notices of the Royal Astronomical Society, 515(4), pp. 5062-5070, ISSN: 0035-8711
    Publication Date: 2022-08-24
    Description: Predicting the solar activity of upcoming cycles is crucial nowadays to anticipate potentially adverse space weather effects on the Earth’s environment produced by coronal transients and traveling interplanetary disturbances. The latest advances in deep learning techniques provide new paradigms to obtain effective prediction models that allow to forecast in detail the evolution of cosmogeophysical time series. Because of the underlying complexity of the dynamo mechanism in the solar interior that is at the origin of the solar cycle phenomenon, the predictions offered by state-of-the-art machine learning algorithms represent valuable tools for our understanding of the cycle progression. As a plus, Bayesian deep learning is particularly compelling thanks to recent advances in the field that provide improvements in both accuracy and uncertainty quantification compared to classical techniques. In this work, a deep learning long short-term memory model is employed to predict the complete profile of Solar Cycle 25, thus forecasting also the advent of the next solar minimum. A rigorous uncertainty estimation of the predicted sunspot number is obtained by applying a Bayesian approach. Two different model validation techniques, namely the Train-Test split and the time series k-fold cross-validation, have been implemented and compared, giving compatible results. The forecasted peak amplitude is lower than that of the preceding cycle. Solar Cycle 25 will last 10.6 ± 0.7 yr, reaching its maximum in the middle of the year 2024. The next solar minimum is predicted in 2030 and will be as deep as the previous one.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...