ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: AWI S1-16-89841
    Description / Table of Contents: This book covers the basics of processing and spectral analysis of monovariate discrete-time signals. The approach is practical, the aim being to acquaint the reader with the indications for and drawbacks of the various methods and to highlight possible misuses. The book is rich in original ideas, visualized in new and illuminating ways, and is structured so that parts can be skipped without loss of continuity. Many examples are included, based on synthetic data and real measurements from the fields of physics, biology, medicine, macroeconomics etc., and a complete set of MATLAB exercises requiring no previous experience of programming is provided. Prior advanced mathematical skills are not needed in order to understand the contents: a good command of basic mathematical analysis is sufficient. Where more advanced mathematical tools are necessary, they are included in an Appendix and presented in an easy-to-follow way. With this book, digital signal processing leaves the domain of engineering to address the needs of scientists and scholars in traditionally less quantitative disciplines, now facing increasing amounts of data.
    Type of Medium: Monograph available for loan
    Pages: xxiv, 900 Seiten , Illustrationen
    ISBN: 978-3-319-25466-1
    Series Statement: Signals and Communication Technology
    Language: English
    Note: Contents: 1 Introduction. - 1.1 Chapter Summary. - 1.2 The Meaning of the Book’s Title. - 1.3 Historical Background. - 1.4 How to Read This Book. - 1.5 Further Reading. - References. - PART 1 BASIC THEORETICAL CONCEPTS. - 2 Discrete-Time Signals and Systems. - 2.1 Chapter Summary. - 2.2 Basic Definitions and Concepts. - 2.3 Discrete-Time Signals: Sequences. - 2.3.1 Basic Sequence Operations. - 2.3.2 Basic Sequences. - 2.3.3 Deterministic and Random Signals. - 2.4 Linear Time-Invariant (LTI) Systems. - 2.4.1 Impulse Response of an LTI System and Linear Convolution. - 2.4.2 An Example of Linear Convolution. - 2.4.3 Interconnections of LTI Systems. - 2.4.4 Effects of Stability and Causality Constraints on the Impulse Response of an LTI System. - 2.4.5 Finite (FIR) and Infinite (IIR) Impulse Response Systems. - 2.4.6 Linear Constant-Coefficient Difference Equation (LCCDE). - 2.4.7 Examples of LCCDE. - 2.4.8 The Solutions of an LCCDE. - 2.4.9 From the LCCDE to the Impulse Response: Examples. - 2.4.10 Eigenvalues and Eigenfunctions of LTI Systems. - References. - 3 Transforms of Discrete-Time Signals. - 3.1 Chapter Summary. - 3.2 z-Transform. - 3.2.1 Examples of z-Transforms and Special Cases. - 3.2.2 Rational z-Transforms. - 3.2.3 Inverse z-Transform. - 3.2.4 The z-Transform on the Unit Circle. - 3.2.5 Selected z-Transform Properties. - 3.2.6 Transfer Function of an LTI System. - 3.2.7 Output Sequence of an LTI System. - 3.2.8 Zeros and Poles: Forms for Rational Transfer Functions. - 3.2.9 Inverse System. - 3.3 Discrete-Time Fourier Transform (DTFT). - 3.3.1 An Example of DTFT Converging in the Mean-Square Sense. - 3.3.2 Line Spectra. - 3.3.3 Inverse DTFT. - 3.3.4 Selected DTFT Properties. - 3.3.5 The DTFT of a Finite-Length Causal Sequence. - 3.4 Discrete Fourier Series (DFS). - 3.4.1 Selected DFS Properties. - 3.4.2 Sampling in the Frequency Domain and Aliasing in the Time Domain. - 3.5 Discrete Fourier Transform (DFT). - 3.5.1 The Inverse DFT in Terms of the Direct DFT. - 3.5.2 Zero Padding. - 3.5.3 Selected DFT Properties. - 3.5.4 Circular Convolution Versus Linear Convolution. - 3.6 Fast Fourier Transform (FFT). - 3.7 Discrete Trigonometric Expansion. - 3.8 Appendix: Mathematical Foundations of Signal Representation. - 3.8.1 Vector Spaces. - 3.8.2 Inner Product Spaces. - 3.8.3 Bases in Vector Spaces. - 3.8.4 Signal Representation by Orthogonal Bases. - 3.8.5 Signal Representation by Standard Bases. - 3.8.6 Frames and Biorthogonal Bases. - 3.8.7 Summary and Complements. - References. - 4 Sampling of Continuous-Time Signals. - 4.1 Chapter Summary. - 4.2 Sampling Theorem. - 4.3 Reconstruction of a Continuous-Time Signal from Its Samples. - 4.4 Aliasing in the Frequency Domain and Anti-Aliasing Filter. - 4.5 The Uncertainty Principle for the Analog Fourier Transform. - 4.6 Support of a Continuous-Time Signal in the Time and Frequency Domains. - 4.7 Appendix: Analog and Digital Frequency Variables. - References. - 5 Spectral Analysis of Deterministic Discrete-Time Signals. - 5.1 Chapter Summary. - 5.2 Issues in Practical Spectral Analysis. - 5.2.1 The Effect of Windowing. - 5.2.2 The Effect of Spectral Sampling. - 5.3 Classical Windows. - 5.4 The Kaiser Window. - 5.5 Energy and Power Signals and Their Spectral Representations. - 5.6 Correlation of Deterministic Discrete-Time Signals. - 5.6.1 Correlation of Energy Signals. - 5.6.2 Correlation of Power Signals. - 5.6.3 Effect of an LTI System on Correlation Properties of Input and Output Signals. - 5.7 Wiener-Khinchin Theorem. - 5.7.1 Energy Signals and Energy Spectrum. - 5.7.2 Power Signals and Power Spectrum. - References. - PART 2 DIGITAL FILTERS. - 6 Digital Filter Properties and Filtering Implementation. - 6.1 Chapter Summary. - 6.2 Frequency-Selective Filters. - 6.3 Real-Causal-Stable-Rational (RCSR) Filters. - 6.4 Amplitude Response. - 6.5 Phase Response. - 6.5.1 Phase Discontinuities and Zero-Phase Response. - 6.5.2 Linear Phase (LP). - 6.5.3 Generalized Linear Phase (GLP). - 6.5.4 Constraints on GLP Filters. - 6.6 Digital Filtering Implementation. - 6.6.1 Direct Forms. - 6.6.2 Transposed-Direct Forms. - 6.6.3 FIR Direct and Transposed-Direct Forms. - 6.6.4 Direct and Transposed-Direct Forms for LP FIR Filters. - 6.6.5 Cascade and Parallel Forms. - 6.7 Zero-Phase Filtering. - 6.8 An Incorrect Approach to Filtering. - 6.9 Filtering After Downsampling. - 6.9.1 Theory of Downsampling. - 6.9.2 An Example of Filtering After Downsampling. - References. - 7 FIR Filter Design. - 7.1 Chapter Summary. - 7.2 Design Process. - 7.3 Specifications of Digital Filters. - 7.3.1 Constraints on the Magnitude Response. - 7.3.2 Constraints on the Phase Response. - 7.4 Selection of Filter Type: IIR or FIR?. - 7.5 FIR-Filter Design Methods and Approximation Criteria. - 7.6 Properties of GLP FIR Filters. - 7.6.1 Factorization of the Zero-Phase Response. - 7.6.2 Zeros of the Transfer Function. - 7.6.3 Another Form of the Adjustable Term. - 7.7 Equiripple FIR Filter Approximations: Minimax Design. - 7.8 Predicting the Minimum Filter Order. - 7.9 MPR Algorithm. - 7.10 Properties of Equiripple FIR Filters. - 7.11 The Minimax Method for Bandpass Filters. - References. - 8 IIR Filter Design. - 8.1 Chapter Summary. - 8.2 Design Process. - 8.3 Lowpass Analog Filters. - 8.3.1 Laplace Transform. - 8.3.2 Transfer Function and Design Parameters. - 8.4 Butterworth Filters. - 8.5 Chebyshev Filters. - 8.5.1 Chebyshev-I Filters. - 8.5.2 Chebyshev-II Filters. - 8.6 Elliptic Filters. - 8.7 Normalized and Non-normalized Filters. - 8.8 Comparison Among the Four Analog Filter Types. - 8.9 From the Analog Lowpass Filter to the Digital One. - 8.9.1 Bilinear Transformation. - 8.9.2 Design Procedure. - 8.9.3 Examples. - 8.10 Frequency Transformations. - 8.10.1 From a Lowpass to a Highpass Filter. - 8.10.2 From a Lowpass to a Bandpass Filter. - 8.10.3 From a Lowpass to a Bandstop Filter . - 8.11 Direct Design of IIR Filters. - 8.12 Appendix. - 8.12.1 Trigonometric Functions with Complex Argument. - 8.12.2 Elliptic Integrals. - 8.12.3 Jacobi Elliptic Functions. - 8.12.4 Landen-Gauss Transformation. - 8.12.5 Elliptic Rational Function. - References. - PART 3 SPECTRAL ANALYSIS. - 9 Statistical Approach to Signal Analysis. - 9.1 Chapter Summary. - 9.2 Preliminary Considerations. - 9.3 Random Variables. - 9.4 Ensemble Averages. - 9.5 Stationary Random Processes and Signals. - 9.6 Ergodicity. - 9.7 Wiener-Khinchin Theorem for Random Signals and Power Spectrum. - 9.8 Cross-Power Spectrum of Two Random Signals. - 9.9 Effect of an LTI System on a Random Signal. - 9.10 Estimation of the Averages of Ergodic Stationary Signals. - 9.10.1 General Concepts in Estimation Theory. - 9.10.2 Mean and Variance Estimation. - 9.10.3 Autocovariance Estimation. - 9.10.4 Cross-Covariance Estimation. - 9.11 Appendix: A Road Map to the Analysis of a Data Record. - References. - 10 Non-Parametric Spectral Methods. - 10.1 Chapter Summary. - 10.2 Power Spectrum Estimation. - 10.3 Periodogram. - 10.3.1 Bias. - 10.3.2 Variance. - 10.3.3 Examples. - 10.3.4 Variance Reduction by Band- and Ensemble-Averaging. - 10.4 Bartlett’s Method. - 10.5 Modified Periodogram. - 10.6 Welch’s Method. - 10.7 Blackman-Tukey Method. - 10.8 Statistical Significance of Spectral Peaks. - 10.9 MultiTaper Method. - 10.10 Estimation of the Cross-Power Spectrum of Two Random Signals. - 10.11 Use of the FFT in Power Spectrum Estimation. - 10.12 Power Spectrum Normalization. - References. - 11 Parametric Spectral Methods. - 11.1 Chapter Summary. - 11.2 Signals with Rational Spectra . - 11.3 Stochastic Models and Processes. - 11.3.1 Autoregressive-Moving Average (ARMA) Model. - 11.3.2 Autoregressive (AR) Model. - 11.3.3 Moving Average (MA) Model. - 11.3.4 How the AR and MA Modeling Approaches Are Theoretically Related. - 11.3.5 First-Order AR and MA Models: White, Red and Blue Noise. - 11.3.6 Higher-Order AR Models. - 11.4 The AR Approach to Spectral Estimation. - 11.5 AR Modeling and Linear Prediction. - 11.6
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-27
    Description: For many years the Torino Cosmogeophysics group has been studying sediment cores drilled from the Gallipoli Terrace in the Gulf of Taranto (Ionian Sea) and deposited in the last millennia. The gravity core GT90-3, in which the 18O series was measured, was drilled from the Gallipoli Terrace in the Gulf of Taranto (Ionian Sea) at 39°45'53''N, 17°53'33''E. It was extracted at a depth of 178 m and its length is 3.57 m. Thanks to its geographical location, the Gallipoli Terrace is a favourable site for climatic studies based on marine sediments, because of its closeness to the volcanically active Campanian area, a region that is unique in the world for its detailed historical documentation of volcanic eruptions. Tephra layers corresponding to historical eruptions were identified along the cores, thus allowing for accurate dating and determination of the sedimentation rate. The measurements performed in different cores from the same area showed that the sedimentation rate is uniform across the whole Gallipoli Terrace. We measured the oxygen isotope composition d18O of planktonic foraminifera. These measurements provided a high-resolution 2,200-year-long record. We sampled the core using a spacing of 2.5 mm corresponding to 3.87 years. Each sample of sediment (5 g) was soaked in 5% calgon solution overnight, then treated in 10% H2O2 to remove any residual organic material. Subsequently it was washed with a distilled-water jet through a sieve with a 150 µm mesh. The fraction 〉 150 µm was kept and oven-dried at 5°C. The planktonic foraminifera Globigerinoides ruber were picked out of the samples under a microscope. For each sample, 20-30 specimens were selected from the fraction comprised between 150 µm and 300 µm. The use of a relatively large number of specimens for each sample reduces the isotopic variability of individual organisms, giving a more representative d18O value. The stable isotope measurements were performed using a VG-PRISM mass spectrometer fitted with an automated ISO-CARB preparation device. Analytical precision based on internal standards was better than 0.1 per mil. Calibration of the mass spectrometer to VPDB scale was done using NBS19 and NBS18 carbonate standards. The strategic location of the drilling area makes this record a unique tool for climate and oceanographic studies of the Central Mediterranean.
    Keywords: Age; AGE; DEPTH, sediment/rock; GC; Globigerinoides ruber, δ18O; Gravity corer; GT90-3; Gulf of Taranto; Mass spectrometer VG Prism
    Type: Dataset
    Format: text/tab-separated-values, 1120 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-03-01
    Print ISSN: 0256-1530
    Electronic ISSN: 1861-9533
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-09-02
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-06-25
    Description: The Mediterranean area belongs to the regions most exposed to hydroclimatic changes, with a likely increase in frequency and duration of droughts in the last decades. However, many climate records like, e.g., North Italian precipitation and river discharge records, indicate that significant decadal variability is often superposed or even dominates long-term hydrological trends. The capability to accurately predict such decadal changes is, therefore, of utmost environmental and social importance. Here, we present a twofold decadal forecast of Po River (Northern Italy) discharge obtained with a statistical approach consisting of the separate application and cross-validation of autoregressive models and neural networks. Both methods are applied to each significant variability component extracted from the raw discharge time series using Singular Spectrum Analysis, and the final forecast is obtained by merging the predictions of the individual components. The obtained 25-year forecasts robustly indicate a prominent dry period in the late 2020s/early 2030s. Our prediction provides information of great value for hydrological management, and a target for current and future near-term numerical hydrological predictions.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-06-21
    Electronic ISSN: 2052-4463
    Topics: Nature of Science, Research, Systems of Higher Education, Museum Science
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-01-13
    Description: In 1989 an ancient burial consisting of a skeleton and a few objects was discovered at the Monte dei Cappuccini Monastery, in Torino (Italy). Anthropological analysis of the skeleton revealed that it belonged to a young man, and the archaeometric characterization of the objects suggested that most of them are compatible with the Medieval period. As a proper archeological survey was not conducted at the time of the finding, due to the religious nature of the site, a high-precision radiocarbon (14C) dating has been performed. The samples were processed with three different methods: besides the ultrafiltration (UF) treatment, we applied the “collagen” (COL) and the Longin-base (LB) methods. While UF and COL treatments provided compatible results, LB method returned ages older with respect the UF one, with significant disagreements in some cases and this evidence is supported by several measurements on the same individual. Thanks to the reduction of the uncertainty with the high number of measured samples and the availability of historical evidence, the possible age of the burial has been limited to the time interval 1464–1515 cal AD.
    Print ISSN: 0033-8222
    Electronic ISSN: 1945-5755
    Topics: Archaeology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-06-01
    Print ISSN: 0273-1177
    Electronic ISSN: 1879-1948
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-07-31
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...