ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-04-12
    Description: Short-wavelength infrared (SWIR) sensors have attracted keen attention due to the increasing necessity in a variety of scientific and industrial applications, including biomedical and information technology fields. Because conventional SWIR sensors are made of inorganic materials with rigid and brittle characteristics, organic materials with a discrete SWIR absorption are required for flexible SWIR sensors in the flexible electronics era. Here, we demonstrate that a polytriarylamine, poly[N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)benzidine] (PolyTPD), can absorb almost full range of SWIR wavelength (λ = 1000–3200 nm) after 48 h doping with tris(pentafluorophenyl)borane (BCF). The spectroscopic characterization disclosed that an electron transfer from PolyTPD to BCF created a new low energy level (gap) state leading to the SWIR absorption in the BCF-doped PolyTPD complexes. Organic phototransistors (OPTRs) with the BCF-doped PolyTPD films as a gate-sensing layer could detect the SWIR light with a reasonable photoresponsivity of ~538 mA W−1 (λ = 1500 nm), ~541 mA W−1 (λ = 2000 nm), and ~222 mA W−1 (λ = 3000 nm). The present breakthrough SWIR-OPTR technology can pave a way for further advances in SWIR-absorbing organic materials and flexible SWIR sensors.
    Electronic ISSN: 2397-4621
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...