ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-01-01
    Description: While radiocarbon is widely applied in dating ancient samples, recent studies reveal that 14C concentrations in modern samples can also yield precise ages due to the atmospheric testing of thermonuclear devices between 1950 and 1963. 14C concentrations in both enamel and organic matter of 13 teeth from 2 areas in China were examined to evaluate and improve this method of forensic investigation. Choosing enamel near the cervix of the tooth can reduce the error caused by the difference between the sample formation time and whole enamel formation time because tooth enamel formations take a long time to complete. A proper regional data set will be helpful to get an accurate result when calculating the age of the sample (T1) by the CALIBomb program. By subtracting the enamel formation time (t), the birth date of an individual (T2) can be confirmed by enamel F14C from 2 teeth formed at different ages. Calculated enamel formation dates by 14C concentration are basically consistent with corresponding actual values, with a mean error of 1.9 yr for all results and 0.2 yr for the samples formed after AD 1960. This method is more effective for dating samples completed after AD 1960. We also found that 14C concentrations in organic matter of tooth roots are much lower than atmospheric concentrations in root formation years, suggesting that the organic material keeps turning over even after tooth formation is complete. This might be a potential tool for identification of death age to extract a proper component for 14C dating. We also observed that δ13C values between hydroxyapatite and organic matter indicate that isotopic fractionation during the biomineralization is 8–9%‰ more positive in mineral fractions than in organic matter.
    Print ISSN: 0033-8222
    Electronic ISSN: 1945-5755
    Topics: Archaeology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...