ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-05-21
    Description: Electromechanical actuators based on sheets of single-walled carbon nanotubes were shown to generate higher stresses than natural muscle and higher strains than high-modulus ferroelectrics. Like natural muscles, the macroscopic actuators are assemblies of billions of individual nanoscale actuators. The actuation mechanism (quantum chemical-based expansion due to electrochemical double-layer charging) does not require ion intercalation, which limits the life and rate of faradaic conducting polymer actuators. Unlike conventional ferroelectric actuators, low operating voltages of a few volts generate large actuator strains. Predictions based on measurements suggest that actuators using optimized nanotube sheets may eventually provide substantially higher work densities per cycle than any previously known technology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baughman -- Cui -- Zakhidov -- Iqbal -- Barisci -- Spinks -- Wallace -- Mazzoldi -- De Rossi D -- Rinzler -- Jaschinski -- Roth -- Kertesz -- New York, N.Y. -- Science. 1999 May 21;284(5418):1340-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research and Technology, AlliedSignal, 101 Columbia Road, Morristown, NJ 07962-1021, USA. Intelligent Polymer Research Institute, University of Wollongong, New South Wales 2522, Australia. School of Engineering, University of Pisa, Centro E. Pia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334985" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...