ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-06-17
    Description: Negative Poisson's ratios are predicted for body-centered-cubic phases that likely exist in white dwarf cores and neutron star outer crusts, as well as those found for vacuumlike ion crystals, plasma dust crystals, and colloidal crystals (including certain virus crystals). The existence of this counterintuitive property, which means that a material laterally expands when stretched, is experimentally demonstrated for very low density crystals of trapped ions. At very high densities, the large predicted negative and positive Poisson's ratios might be important for understanding the asteroseismology of neutron stars and white dwarfs and the effect of stellar stresses on nuclear reaction rates. Giant Poisson's ratios are both predicted and observed for highly strained coulombic photonic crystals, suggesting possible applications of large, tunable Poisson's ratios for photonic crystal devices.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baughman -- Dantas -- Stafstrom -- Zakhidov -- Mitchell -- Dubin -- New York, N.Y. -- Science. 2000 Jun 16;288(5473):2018-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Honeywell International, Honeywell Technology Center, Morristown, NJ 07962-1021, USA. Departamento de Fisica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, 36036-330, Mina Gerais, Brazil. Department of Physics and Measurement Technolo.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10856209" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-09-06
    Description: Nanotube fibers are expected to have a wide range of applications from energy storage to high-strength mechanical devices. But as Baughman explains in his Perspective, methods for making such fibers have been of limited success. In contrast, the process reported by Vigolo et al. shows great promise. Together with a recently reported, more economically viable nanotube production process, this method may open the door to large-scale devices and materials based on carbon nanotubes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baughman, R H -- New York, N.Y. -- Science. 2000 Nov 17;290(5495):1310-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17787234" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-10-30
    Description: Porous carbons that are three-dimensionally periodic on the scale of optical wavelengths were made by a synthesis route resembling the geological formation of natural opal. Porous silica opal crystals were sintered to form an intersphere interface through which the silica was removed after infiltration with carbon or a carbon precursor. The resulting porous carbons had different structures depending on synthesis conditions. Both diamond and glassy carbon inverse opals resulted from volume filling. Graphite inverse opals, comprising 40-angstrom-thick layers of graphite sheets tiled on spherical surfaces, were produced by surface templating. The carbon inverse opals provide examples of both dielectric and metallic optical photonic crystals. They strongly diffract light and may provide a route toward photonic band-gap materials.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zakhidov -- Baughman -- Iqbal -- Cui -- Khayrullin I -- Dantas -- Marti -- Ralchenko -- New York, N.Y. -- Science. 1998 Oct 30;282(5390):897-901.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉A. A. Zakhidov and I. Khayrullin are at AlliedSignal, Incorporated, Research and Technology, Morristown, NJ 07962-1021, USA, and in the Department of Thermal Physics of the Uzbekistan Academy of Sciences, Katartal 28, Tashkent, Uzbekistan. R. H. Baugh.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9794752" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-05-21
    Description: Electromechanical actuators based on sheets of single-walled carbon nanotubes were shown to generate higher stresses than natural muscle and higher strains than high-modulus ferroelectrics. Like natural muscles, the macroscopic actuators are assemblies of billions of individual nanoscale actuators. The actuation mechanism (quantum chemical-based expansion due to electrochemical double-layer charging) does not require ion intercalation, which limits the life and rate of faradaic conducting polymer actuators. Unlike conventional ferroelectric actuators, low operating voltages of a few volts generate large actuator strains. Predictions based on measurements suggest that actuators using optimized nanotube sheets may eventually provide substantially higher work densities per cycle than any previously known technology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baughman -- Cui -- Zakhidov -- Iqbal -- Barisci -- Spinks -- Wallace -- Mazzoldi -- De Rossi D -- Rinzler -- Jaschinski -- Roth -- Kertesz -- New York, N.Y. -- Science. 1999 May 21;284(5418):1340-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research and Technology, AlliedSignal, 101 Columbia Road, Morristown, NJ 07962-1021, USA. Intelligent Polymer Research Institute, University of Wollongong, New South Wales 2522, Australia. School of Engineering, University of Pisa, Centro E. Pia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334985" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-11-13
    Description: Laser-cooled 9Be+ ions confined in two-dimensionally extended lattice planes were directly observed, and the images were used to characterize the structural phases of the ions. Five different stable crystalline phases were observed, and the energetically favored structure could be sensitively tuned by changing the areal density of the confined ions. The experimental results are in good agreement with theoretical predictions for the planar (infinite in two dimensions) one-component plasma. Qualitatively similar structural phase transitions occur, or are predicted to occur, in other experimentally realizable planar systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mitchell -- Bollinger -- Dubin -- Huang -- Itano -- Baughman -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1290-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉T. B. Mitchell, J. J. Bollinger, X.-P. Huang, W. M. Itano, Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80303, USA. D. H. E. Dubin, Department of Physics, University of California at San Diego, La Joll.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812887" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1991-11-08
    Description: The appearance of superconductivity at relatively high temperatures in alkali metal-doped C(60) fullerene provides the challenge to both understand the nature and origin of the superconductivity and to determine the upper limit of the superconducting transition temperature (T(c)). Towards the latter goal, it is shown that doping with potassium-thallium and rubidium-thallium alloys in the 400 to 430 degrees C temperature range increases the T(c) of C(60)/C(70) mixtures to 25.6 K and above 45 K, respectively. Similar increases in T(c) were also observed upon analogous doping of pure C(60). Partial substitution of potassium with thallium in interstitial sites between C(60) molecules is suggested by larger observed unit cell parameters than for the K(3)C(60) and K(4)C(60) phases. Contrary to previous results for C(60) doped with different alkali metals, such expansion does not alone account for the changes in critical temperature.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iqbal, Z -- Baughman, R H -- Ramakrishna, B L -- Khare, S -- Murthy, N S -- Bornemann, H J -- Morris, D E -- New York, N.Y. -- Science. 1991 Nov 8;254(5033):826-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17787170" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-05-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iqbal, Z -- Baughman, R H -- Khare, S -- Murthy, N S -- Ramakrishna, B L -- Bornemann, H J -- Morris, D E -- New York, N.Y. -- Science. 1992 May 15;256(5059):950-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17794983" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-03-21
    Description: Improved electrically powered artificial muscles are needed for generating force, moving objects, and accomplishing work. Carbon nanotube aerogel sheets are the sole component of new artificial muscles that provide giant elongations and elongation rates of 220% and (3.7 x 10(4))% per second, respectively, at operating temperatures from 80 to 1900 kelvin. These solid-state-fabricated sheets are enthalpic rubbers having gaslike density and specific strength in one direction higher than those of steel plate. Actuation decreases nanotube aerogel density and can be permanently frozen for such device applications as transparent electrodes. Poisson's ratios reach 15, a factor of 30 higher than for conventional rubbers. These giant Poisson's ratios explain the observed opposite sign of width and length actuation and result in rare properties: negative linear compressibility and stretch densification.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aliev, Ali E -- Oh, Jiyoung -- Kozlov, Mikhail E -- Kuznetsov, Alexander A -- Fang, Shaoli -- Fonseca, Alexandre F -- Ovalle, Raquel -- Lima, Marcio D -- Haque, Mohammad H -- Gartstein, Yuri N -- Zhang, Mei -- Zakhidov, Anvar A -- Baughman, Ray H -- New York, N.Y. -- Science. 2009 Mar 20;323(5921):1575-8. doi: 10.1126/science.1168312.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19299612" target="_blank"〉PubMed〈/a〉
    Keywords: Biomimetic Materials/chemistry ; Elasticity ; Muscle, Skeletal ; *Nanotubes, Carbon/chemistry ; Static Electricity ; Temperature ; Tensile Strength
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-11-20
    Description: Artificial muscles are of practical interest, but few types have been commercially exploited. Typical problems include slow response, low strain and force generation, short cycle life, use of electrolytes, and low energy efficiency. We have designed guest-filled, twist-spun carbon nanotube yarns as electrolyte-free muscles that provide fast, high-force, large-stroke torsional and tensile actuation. More than a million torsional and tensile actuation cycles are demonstrated, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. Electrical, chemical, or photonic excitation of hybrid yarns changes guest dimensions and generates torsional rotation and contraction of the yarn host. Demonstrations include torsional motors, contractile muscles, and sensors that capture the energy of the sensing process to mechanically actuate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lima, Marcio D -- Li, Na -- Jung de Andrade, Monica -- Fang, Shaoli -- Oh, Jiyoung -- Spinks, Geoffrey M -- Kozlov, Mikhail E -- Haines, Carter S -- Suh, Dongseok -- Foroughi, Javad -- Kim, Seon Jeong -- Chen, Yongsheng -- Ware, Taylor -- Shin, Min Kyoon -- Machado, Leonardo D -- Fonseca, Alexandre F -- Madden, John D W -- Voit, Walter E -- Galvao, Douglas S -- Baughman, Ray H -- New York, N.Y. -- Science. 2012 Nov 16;338(6109):928-32. doi: 10.1126/science.1226762.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23161994" target="_blank"〉PubMed〈/a〉
    Keywords: Absorption ; Electricity ; Hot Temperature ; Hydrogen/chemistry ; *Muscle Contraction ; Muscles/*chemistry/ultrastructure ; *Nanotubes, Carbon ; Optics and Photonics ; Photons ; *Tensile Strength
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-02-02
    Description: Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Volder, Michael F L -- Tawfick, Sameh H -- Baughman, Ray H -- Hart, A John -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):535-9. doi: 10.1126/science.1222453.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉imec, 3001 Heverlee, Belgium. michael.devolder@imec.be〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23372006" target="_blank"〉PubMed〈/a〉
    Keywords: Biosensing Techniques ; Biotechnology ; Commerce/*trends ; Nanotubes, Carbon/*chemistry ; Polymers/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...