ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-10-25
    Description: We describe a procedure for designing proteins with backbones produced by varying the parameters in the Crick coiled coil-generating equations. Combinatorial design calculations identify low-energy sequences for alternative helix supercoil arrangements, and the helices in the lowest-energy arrangements are connected by loop building. We design an antiparallel monomeric untwisted three-helix bundle with 80-residue helices, an antiparallel monomeric right-handed four-helix bundle, and a pentameric parallel left-handed five-helix bundle. The designed proteins are extremely stable (extrapolated DeltaGfold 〉 60 kilocalories per mole), and their crystal structures are close to those of the design models with nearly identical core packing between the helices. The approach enables the custom design of hyperstable proteins with fine-tuned geometries for a wide range of applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4612401/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4612401/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Po-Ssu -- Oberdorfer, Gustav -- Xu, Chunfu -- Pei, Xue Y -- Nannenga, Brent L -- Rogers, Joseph M -- DiMaio, Frank -- Gonen, Tamir -- Luisi, Ben -- Baker, David -- 076846/Wellcome Trust/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):481-5. doi: 10.1126/science.1257481.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, 8010-Graz, Austria. ; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK. ; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. ; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA. dabaker@u.washington.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342806" target="_blank"〉PubMed〈/a〉
    Keywords: *Combinatorial Chemistry Techniques ; Crystallography, X-Ray ; Protein Denaturation ; Protein Engineering/*methods ; *Protein Structure, Secondary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...