ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-19
    Description: We present an effective approach to improve the sensitivity of inductance coil sensors by designing a sensor core that consists of multiple soft ferromagnetic microwires. A systematic study of the longitudinally excited magneto-inductive (LEMI) effect has been performed in a non-magnetic copper wire coil with a filler composed of multiple Co-rich amorphous microwires. Melt-extracted microwires of Co 68.2 Fe 4.3 B 15 Si 12.5 and glass-coated microwires of Co 68 B 15 Si 10 Mn 7 with excellent soft magnetic properties were used for this study. We have shown that the LEMI ratio and field sensitivity of an inductive coil depend strongly upon the filler-to-air ratio inside the coil, the magnetic softness, and the anisotropy axis distribution of the microwire. Relative to a single-microwire based sensor, the LEMI ratio and field sensitivity of a multi-microwire based sensor are enhanced by three to four times, when varying the number of microwires inside the inductive coil. The sensitivity of the sensor using four glass-coated Co 68 B 15 Si 10 Mn 7 microwires in the core reaches a maximum value of 1957%/Oe. Our study paves a pathway for the development of novel room-temperature electric contact free magnetic sensors for use in industry, biomagnetism, space science, and geoscience.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...