ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2014-12-19
    Description: We present an effective approach to improve the sensitivity of inductance coil sensors by designing a sensor core that consists of multiple soft ferromagnetic microwires. A systematic study of the longitudinally excited magneto-inductive (LEMI) effect has been performed in a non-magnetic copper wire coil with a filler composed of multiple Co-rich amorphous microwires. Melt-extracted microwires of Co 68.2 Fe 4.3 B 15 Si 12.5 and glass-coated microwires of Co 68 B 15 Si 10 Mn 7 with excellent soft magnetic properties were used for this study. We have shown that the LEMI ratio and field sensitivity of an inductive coil depend strongly upon the filler-to-air ratio inside the coil, the magnetic softness, and the anisotropy axis distribution of the microwire. Relative to a single-microwire based sensor, the LEMI ratio and field sensitivity of a multi-microwire based sensor are enhanced by three to four times, when varying the number of microwires inside the inductive coil. The sensitivity of the sensor using four glass-coated Co 68 B 15 Si 10 Mn 7 microwires in the core reaches a maximum value of 1957%/Oe. Our study paves a pathway for the development of novel room-temperature electric contact free magnetic sensors for use in industry, biomagnetism, space science, and geoscience.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...