ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 64 (1988), S. 354-364 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The thermal stability of coevaporated amorphous WSi2±x(x(approximately-equal-to)±0.2) thin films from room temperature to 1000 °C has been studied by in situ resistivity measurements and hot-stage transmission-electron microscopy. During continuous heating two consecutive phase transformations were observed to occur via nucleation and growth processes. The first which occurs at ∼420 °C is the crystallization of the amorphous film to a metastable, semiconducting hexagonal phase WSi2. The second which occurs at ∼620 °C is the transformation of the hexagonal phase to the thermodynamically stable, metallic, tetragonal phase of WSi2. The hexagonal phase is characterized by an acicular morphology and its formation is associated with a drastic increase in resistivity. The crystallites (grains) of the stable tetragonal phase are equiaxed and their formation is associated with a rapid decrease in resistivity. In order to achieve a low value of resistivity, ∼70 μΩ cm at room temperature, the tetragonal phase must be annealed to the neighborhood of 1000 °C. The activation energy for the hexagonal to tetragonal transformation (∼3 eV) was found to be higher than that for the crystallization (∼2 eV). The mode parameters for both transformations were found to be almost the same, n∼2. The characteristics of both transformations were not greatly influenced by the compositional changes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...