ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 2983-2989 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We investigate by high-resolution x-ray diffraction (HRXRD), temperature-dependent photoluminescence (PL) and reflectivity spectroscopies, and low-temperature selective-photoluminescence spectroscopy ZnSe single crystals grown by solid-phase recrystallization. HRXRD reveals the high structural perfection of the samples which exhibit rocking-curve linewidths in the 15–20 arcsec range. The low-temperature PL spectra are dominated by the so-called Ideep1 excitonic line, a neutral-acceptor bound-exciton line I1, the free-exciton emission FX, and the n=2 excited state of FX. We identify the main residual impurities to be Li acceptors. Donor–acceptor pair bands are very hardly detected at low temperature which indicates a low donor content. A major characteristics of these samples is the quasi-absence of any Cu-related deep emission which generally plagues the PL spectra of bulk ZnSe. Consequently, Ideep1 is ascribed to Zn-vacancy–donor complexes. Finally, from the temperature dependence of the PL emission and reflectivity, the band-gap energy of bulk ZnSe is found to linearly shrink with the temperature above 80 K at a rate of −4.3×10−4 eV K−1. The room-temperature gap is estimated to 2720±2 meV. Our results indicate that solid-phase recrystallization produces ZnSe samples with the highest structural quality and purity achievable at present time. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...